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Abstract 
 
 Benthic shells can contribute greatly to the scattering variability of the ocean bottom, 
particularly at low grazing angles. Among the effects of shell aggregates are increased 
scattering strength and potential subcritical angle penetration of the seafloor. Sand dollars 
(Dendraster excentricus) occur commonly in the ocean and have been shown to be significant 
scatters of sound. In order to understand more fully the scattering mechanisms of these 
organisms, the scattering from individual sand dollars was studied using several methods.  

Using an approximation to the Helmholtz-Kirchhoff integral, the Kirchhoff method 
gives an analytic integral expression to the backscattering from an object. This integral was first 
solved analytically for a disk and a spherical cap, two high aspect ratio oblate shapes which 
simplify the shape of an individual sand dollar. A method for solving the Kirchhoff integral 
numerically was then developed. An exact three dimensional model of a sand dollar test was 
created from computed tomography scans. The Kirchhoff integral was then solved numerically 
for this model of the sand dollar.  

The finite element method, a numerical technique for approximating the solutions to 
partial differential equations and integral equations, was used to model the scattering from an 
individual sand dollar as well. COMSOL Multiphysics was used for the implementation of the 
finite element method. 

Modeling results were compared with published laboratory experimental data from the 
free field scattering of both an aluminum disk and a sand dollar. Insight on the scattering 
mechanisms of individual sand dollar, including elastic behavior and diffraction effects, was 
gained from these comparisons. 
 
 
Thesis Co-Supervisor: Tim Stanton 
Title: Senior Scientist 
 
Thesis Co-Supervisor: Andone Lavery 
Title: Associate Scientist 
 

 



 4 

Acknowledgements 
 
 

The chance to pursue scientific research at the Massachusetts Institute of Technology 

and the Woods Hole Oceanographic Institution for the past two years has fulfilled a dream. I 

will forever be grateful to the Navy for providing me the opportunity and the funding to make 

this possible. It has been time well spent! 

 I am extremely appreciative of the support of my two research advisors at the Woods 

Hole Oceanographic Institution. Dr. Tim Stanton provided the framework for my work at 

WHOI with his immense experience in the field of acoustic scattering. The enthusiasm and 

acumen that he offered have been truly valuable gifts. Dr. Andone Lavery has been a constant 

source of guidance and tutelage, helping me clear many difficult research hurdles. Her insight 

and tireless assistance were always more than enough to encourage me to continue forward. 

This thesis would not have been possible without the help of Dr. Gonzalo Feijoo. His 

generous donations of time and energy helped introduce me to the powerful and challenging 

world of modern numerical analysis. Without his insight and contribution of computer 

resources, the necessary finite element method calculations would have been impossible. I am 

also grateful to Dr. Dezhang Chu who provided the experimental data that was such a key 

component of my work. 

I would not be where I am today without my parents, who very early taught me the 

value of filling “the unforgiving minute with sixty seconds worth of distance run.” Their 

unwavering love and support have been a steadfast source of strength. The rest of my family, 

especially my sister Mary Devon and brother Peter, have continued to help with challenges on 

the road ahead by reminding me of where I come from.  

 So many friends, old and new, have been a part of my life over the past two years. I 

know I will always remember fondly the time that I spent with them in Cambridge and Woods 

Hole. Finally I would like to thank my amazing girlfriend, Maya, for her encouragement and 

support in everything that I do. Daisuki desu. 

 
 
 
 
 
 



 5 

Contents 

 
CHAPTER 1 INTRODUCTION.......................................................................................................................11 

1.1 SOUND AS A TOOL IN THE OCEAN ...............................................................................................................11 

1.2 SCATTERING FROM BENTHIC SHELLS..........................................................................................................12 

1.3 SCATTERING FROM SAND DOLLARS............................................................................................................14 

1.4 THE K IRCHHOFF METHOD ..........................................................................................................................15 

1.5 THE FINITE ELEMENT METHOD ..................................................................................................................16 

1.6 COMPARISON TO EXPERIMENT....................................................................................................................18 

1.7 OVERVIEW OF STUDY .................................................................................................................................19 

CHAPTER 2 THE KIRCHHOFF METHOD .................................................................................................20 

2.1 INTRODUCTION...........................................................................................................................................20 

2.2 THEORETICAL BACKGROUND .....................................................................................................................20 

2.3 SCATTERING FROM A SPHERE.....................................................................................................................24 

2.3.1 Kirchhoff Integral Solution for a Sphere ...............................................................................................24 
2.3.2 Modal Series Solution for a Sphere .......................................................................................................26 
2.3.3 Comparison of Kirchhoff Method and Modal Series Solution for a Rigid/Fixed Sphere.......................27 

2.4 SCATTERING FROM A FINITE CYLINDER ......................................................................................................28 

2.4.1 Kirchhoff Integral Solution for a Finite Cylinder ..................................................................................29 
2.4.2 Modal Series Based Solution for a Finite Cylinder ...............................................................................31 
2.4.3 Comparison of Kirchhoff Method and Modal Series Based Solution for a Rigid/Fixed Finite Cylinder
 32 

2.5 K IRCHHOFF METHOD APPROXIMATIONS FOR THE SAND DOLLAR ..............................................................33 

2.5.1 Kirchhoff Integral Solution for an Infinitely Thin Disk .........................................................................33 
2.5.2 Kirchhoff Integral Solution for a Disk with Finite Thickness ................................................................35 
2.5.3 Kirchhoff Integral Solution for a Spherical Cap....................................................................................38 

2.6 SOLVING THE K IRCHHOFF INTEGRAL NUMERICALLY .................................................................................39 

2.6.1 Creating Geometry and a Mesh in COMSOL Multiphysics...................................................................40 
2.6.2 Determination of Insonified Surface ......................................................................................................41 
2.6.3 Evaluating the Kirchhoff Integral Numerically .....................................................................................43 

2.7 COMPARISON OF METHODS FOR SOLVING THE K IRCHHOFF INTEGRAL .......................................................44 
2.7.1 Sphere ....................................................................................................................................................45 
2.7.2 Finite Cylinder.......................................................................................................................................49 
2.7.3 Disk........................................................................................................................................................51 
2.7.4 Spherical Cap ........................................................................................................................................54 

2.8 CHAPTER SUMMARY ...................................................................................................................................56 

CHAPTER 3 THE FINITE ELEMENT METHOD .......................................................................................58 

3.1 INTRODUCTION...........................................................................................................................................58 

3.2 THEORETICAL BACKGROUND .....................................................................................................................58 

3.3 TECHNIQUE FOR REDUCING NUMERICAL ERROR IN TWO AND THREE DIMENSIONS...................................66 
3.3.1 Circular Integral Method.......................................................................................................................67 
3.3.2 Spherical Integral Method .....................................................................................................................70 

3.4 IMPLEMENTATION OF COMSOL MULTIPHYSICS........................................................................................78 

3.4.1 COMSOL Methodology .........................................................................................................................78 
3.4.1.1 Geometry and Elements ................................................................................................................................ 78 

3.4.1.2 Defining the Partial Differential Equations................................................................................................... 79 

3.4.1.3 The Solution Phase ....................................................................................................................................... 83 

3.4.2 Accuracy of the Solution ........................................................................................................................83 
3.4.2.1 Two Dimensional Test: Rigid/Fixed Infinite Cylinder (Max Error Norm) ................................................... 84 

3.4.2.2 Two Dimensional Test: Rigid/Fixed Infinite Cylinder (Infinite Form Function).......................................... 88 

3.4.2.3 Three Dimensional Test: Rigid/Fixed Sphere ............................................................................................... 92 

3.4.3 Methodology for Sand Dollar Predictions.............................................................................................94 



 6 

3.5 CHAPTER SUMMARY ...................................................................................................................................94 

CHAPTER 4 MODEL RESULTS AND COMPARISON TO LABORATORY EXPERIMENTAL DATA
 96 

4.1 INTRODUCTION...........................................................................................................................................96 

4.2 COMPARISON OF PREDICTED SCATTERING BASED ON THE K IRCHHOFF AND FINITE ELEMENT METHODS FOR 

A RIGID/FIXED DISK ................................................................................................................................................97 

4.3 EXPERIMENT BACKGROUND.....................................................................................................................100 

4.4 COMPARISONS OF ACOUSTIC SCATTERING PREDICTIONS TO EXPERIMENTAL DATA .................................102 
4.4.1 Aluminum Disk.....................................................................................................................................104 
4.4.2 Sand Dollar..........................................................................................................................................108 

4.4.2.1 Surface Mesh Geometry from CT Scans..................................................................................................... 109 

4.4.2.2 Sand Dollar Flat Side.................................................................................................................................. 110 

4.4.2.3 Sand Dollar Round Side.............................................................................................................................. 115 

4.5 HEURISTIC IMPROVEMENT TO SCATTERING MODELS DEVELOPED FOR RIGID/FIXED OBJECTS.................120 
4.5.1 Reflection Coefficients from Infinite Half-Spaces and Layers .............................................................120 
4.5.2 Determination of Reflection Coefficient for Aluminum Disk and Sand Dollar....................................123 
4.5.3 Heuristic Correction to the Rigid/Fixed Scattering Models ................................................................126 

4.5.3.1 Aluminum Disk........................................................................................................................................... 126 

4.5.3.2 Sand Dollar Flat Side.................................................................................................................................. 128 

4.5.3.3 Sand Dollar Round Side.............................................................................................................................. 130 

4.6 SUMMARY OF RESULTS.............................................................................................................................131 

CHAPTER 5 SUMMARY AND CONCLUSION..........................................................................................133 

5.1 MOTIVATION ............................................................................................................................................133 

5.2 MODELING................................................................................................................................................133 

5.3 RECOMMENDATIONS FOR FUTURE WORK.................................................................................................134 

5.4 CONTRIBUTIONS OF THESIS......................................................................................................................136 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 7 

List of Figures 
 
Figure 1 – Photograph of sand dollar test, top-view (Stanton and Chu, 2004). .............................. 14 
Figure 2 – Spherical coordinate system, shown with incoming wave and without scatterer 

geometry............................................................................................................................................ 25 
Figure 3 – Target strength of a rigid/fixed sphere of radius 5 cm, from the Kirchhoff method 

(starred line) and modal series solution (smooth line). .............................................................. 27 
Figure 4 – Cylindrical coordinate system, shown with incoming wave and without scatterer 

geometry............................................................................................................................................ 29 
Figure 5 – Broadside target strength of a rigid/fixed finite cylinder of length 10 cm and radius 1 

cm using the Kirchhoff method (starred line) and modal series approximation (solid line).
............................................................................................................................................................ 32 

Figure 6 – Geometry of the infinitely thin disk.................................................................................... 34 
Figure 7 – Geometry of the disk............................................................................................................. 36 
Figure 8 – Geometry of the spherical cap. ............................................................................................ 38 
Figure 9 – Examples of minmax tests in x for Newell’s algorithm. .................................................. 43 
Figure 10 – Surface mesh of a sphere of radius 5 cm in COMSOL. .................................................. 45 
Figure 11 – Surface mesh of a sphere in MATLAB after Newell’s algorithm. ................................ 46 
Figure 12 - Surface mesh of a sphere in MATLAB after Newell’s algorithm, with triangle 

midpoints. ......................................................................................................................................... 47 
Figure 13 – Close view of surface mesh of sphere, with midpoints. ................................................ 47 
Figure 14 – Target strength of a rigid/fixed sphere with radius 5 cm by solving the Kirchhoff 

integral analytically (solid line) and numerically (stars)............................................................ 48 
Figure 15 – Surface mesh of a finite cylinder in COMSOL. ............................................................... 49 
Figure 16 – Surface mesh of a finite cylinder in MATLAB after Newell’s algorithm. ................... 50 
Figure 17 - Target strength of a rigid/fixed finite cylinder with length 10 cm and radius 1 cm by 

solving the Kirchhoff integral analytically (solid line) and numerically (stars). .................... 51 
Figure 18 - Surface mesh of a disk in COMSOL. ................................................................................. 52 
Figure 19 - Surface mesh of a disk in MATLAB after Newell’s algorithm. ..................................... 52 
Figure 20 - Target strength of a rigid/fixed disk with radius 5 cm and thickness 1 cm by solving 

the Kirchhoff integral analytically (solid line) and numerically (stars). .................................. 53 
Figure 21 - Surface mesh of a spherical cap in COMSOL................................................................... 54 
Figure 22 - Surface mesh of a spherical cap in MATLAB after Newell’s algorithm....................... 55 
Figure 23 - Target strength of a rigid/fixed spherical cap with radius 5 cm and radius 1.34 cm 

by solving the Kirchhoff integral analytically (solid line) and numerically (stars). ............... 56 
Figure 24 – Domain of three dimensional scattering problem, shown with incident wave. ........ 59 
Figure 25 – Geometry of a bounded three dimensional scattering problem................................... 60 
Figure 26 – Examples of two linear (left) and three quadratic (right) triangular finite elements, 

used to discretize two dimensional problems. The black dots represent the positions of the 
nodes. ................................................................................................................................................. 64 

Figure 27 – Example of a three dimensional quadrilateral quadratic finite element. The black 
dots represent the positions of the ten nodes............................................................................... 65 

Figure 28 – Sample three dimensional and two dimensional finite element domains in 
COMSOL. .......................................................................................................................................... 79 

Figure 29 – Total and scattered pressure fields from a rigid/fixed infinite cylinder, ka = 10 in 
COMSOL. The incident wave arrives from the left side of the domain................................... 86 



 8 

Figure 30 – Max error norm versus EPW for COMSOL approximation of scattering from a 
rigid/fixed infinite cylinder at ka = 1............................................................................................ 87 

Figure 31 – Max error norm versus EPW for COMSOL approximation of scattering from a 
rigid/fixed infinite cylinder at ka = 5............................................................................................ 87 

Figure 32 – Absolute value of infinite form function of a rigid/fixed infinite cylinder, using the 
modal series solution and COMSOL (point method). EPW = 6 and SMD = 50...................... 89 

Figure 33 – Absolute value of infinite form function of a rigid/fixed infinite cylinder, using the 
modal series solution and COMSOL (circular integral method). EPW = 6 and SMD = 50. .. 90 

Figure 34 – Error in the infinite form function approximation of a rigid/fixed infinite cylinder at 
SMD = 50. .......................................................................................................................................... 91 

Figure 35 – Error in the infinite form function approximation of a rigid/fixed infinite cylinder at 
EPW = 6. ............................................................................................................................................ 92 

Figure 36 – Target strength of a rigid/fixed sphere, radius 5 cm, using the modal series solution 
and COMSOL (spherical integral method). EPW = 6 and SMD = 20. ...................................... 93 

Figure 37 - Target strength at broadside incidence of a rigid/fixed disk of radius 3.625 cm and 
thickness 5.5 mm, based on (1) the analytic solution of the Kirchhoff integral (dashed line) 
and (2) the finite element method using COMSOL with axial symmetry (line with x’s). EPW 
= 6 and SMD = 50. ............................................................................................................................ 98 

Figure 38 – Target strength at 70 kHz of a rigid/fixed disk of radius 3.625 cm and thickness 5.5 
mm based on (1) the analytic solution of the Kirchhoff integral (dashed line) and (2) the 
finite element method using COMSOL (line with x’s). EPW = 6 and SMD = 20. ................... 99 

Figure 39 – Cross section of a sand dollar (Dendraster excentricus) obtained from CT scans. 
Details of the inner structure are revealed in addition to the high-resolution measurements 
of the outer shape........................................................................................................................... 101 

Figure 40 – Comparison of measured target strength at 70 kHz as a function of angle of 
orientation for an aluminum disk (solid starred line), radius 4 cm and thickness 1.9 mm, to 
predicted target strength of a rigid/fixed disk of similar dimensions found by solving the 
Kirchhoff integral analytically (dashed line).............................................................................. 105 

Figure 41 – Comparison of measured target strength at 70 kHz as a function of angle of 
orientation for an aluminum disk (solid starred line), radius 4 cm and thickness 1.9 mm, to 
predicted target strength of a rigid/fixed disk of similar dimensions using the finite 
element method in COMSOL (thin solid line with x’s). EPW = 6 and SMD = 20................. 107 

Figure 42 – Three dimensional sand dollar model in COMSOL, with the round side visible.... 109 
Figure 43 – Sand dollar surface mesh in MATLAB after implementing Newell’s algorithm, with 

the orientation corresponding to an incident wave normal to the flat side........................... 110 
Figure 44 – Comparison of predicted target strength at 70 kHz as a function of angle of 

orientation for a rigid/fixed disk, radius 3.625 cm and thickness 5.5 mm, based on the 
analytic solution of the Kirchhoff integral (dashed line) to predicted target strength of the 
flat side of a rigid/fixed sand dollar of similar dimensions based on a numerical solution to 
the Kirchhoff integral (solid line with circles)............................................................................ 111 

Figure 45 – Comparison of measured target strength at 70 kHz as a function of angle of 
orientation for the flat side of a sand dollar (solid starred line), to predicted target strength 
of a rigid/fixed disk, radius 3.625 cm and thickness 5.5 mm, found by solving the Kirchhoff 
integral analytically (dashed line). .............................................................................................. 112 

Figure 46 – Comparison of measured target strength at 70 kHz as a function of angle of 
orientation for the flat side of a sand dollar (solid starred line), to predicted target strength 



 9 

of the flat side of a rigid/fixed sand dollar found by solving the Kirchhoff integral 
numerically (solid line with circles). ........................................................................................... 113 

Figure 47 – Comparison of measured target strength at 70 kHz as a function of angle of 
orientation for the flat side of a sand dollar (solid starred line), to predicted target strength 
of a rigid/fixed disk of radius 3.625 cm and thickness 5.5 mm using the finite element 
method in COMSOL (thin solid line with x’s). EPW = 6 and SMD = 20................................ 115 

Figure 48 – Sand dollar surface mesh in MATLAB after implementing Newell’s algorithm, with 
the orientation corresponding to an incident wave normal to the round side. .................... 116 

Figure 49 – Comparison of predicted target strength at 70 kHz as a function of angle of 
orientation for an spherical cap, radius 3.625 cm and thickness 1.1 cm, based on the analytic 
solution of the Kirchhoff integral (dashed line) to predicted target strength of the round 
side of a rigid/fixed sand dollar of similar dimensions based on a numerical solution to the 
Kirchhoff integral (solid line with circles). ................................................................................. 117 

Figure 50 – Comparison of measured target strength at 70 kHz as a function of angle of 
orientation for the round side of a sand dollar (solid starred line), to predicted target 
strength of a rigid/fixed spherical cap, radius 3.625 cm and thickness 1.1 cm, found by 
solving the Kirchhoff integral analytically (dashed line). ........................................................ 118 

Figure 51 – Comparison of measured target strength at 70 kHz as a function of angle of 
orientation for the round side of a sand dollar (solid starred line), to predicted target 
strength of the round side of a rigid/fixed sand dollar found by solving the Kirchhoff 
integral numerically (solid line with circles).............................................................................. 119 

Figure 52 – Geometry of a single layer in between two infinite half spaces. ................................ 121 
Figure 53 – Reflection coefficients from three layer model (calcite-water-calcite). Calcite 

thickness refers to both top and bottom layer thickness. ......................................................... 125 
Figure 54 – Comparison of measured target strength at 70 kHz as a function of angle of 

orientation for an aluminum disk (solid starred line), radius 4 cm and thickness 1.9 mm, to 
predicted target strength of a penetrable disk (|R| = 0.5954) of similar dimensions found 
by solving the Kirchhoff integral analytically (dashed line).................................................... 126 

Figure 55 – Comparison of measured target strength at 70 kHz as a function of angle of 
orientation for an aluminum disk (solid starred line), radius 4 cm and thickness 1.9 mm, to 
predicted target strength of an penetrable disk (|R| = 0.5954) of similar dimensions using 
the finite element method in COMSOL (thin solid line with x’s). EPW = 6 and SMD = 20.127 

Figure 56 – Comparison of measured target strength at 70 kHz as a function of angle of 
orientation for the flat side of a sand dollar (solid starred line), to predicted target strength 
of the flat side of  penetrable sand dollar (|R| = 0.4) found by solving the Kirchhoff 
integral numerically (solid line with circles).............................................................................. 128 

Figure 57 – Comparison of measured target strength at 70 kHz as a function of angle of 
orientation for the flat side of a sand dollar (solid starred line), to predicted target strength 
of a penetrable disk (|R| = 0.4) of radius 3.625 cm and thickness 5.5 mm using the finite 
element method in COMSOL (thin solid line with x’s). EPW = 6 and SMD = 20................. 129 

Figure 58 – Comparison of measured target strength at 70 kHz as a function of angle of 
orientation for the round side of a sand dollar (solid starred line), to predicted target 
strength of the round side of a penetrable sand dollar (|R| = 0.4) found by solving the 
Kirchhoff integral numerically (solid line with circles)............................................................ 130 

 
 



 10 

List of Tables 
 

Table 1 – Target information for the acoustic scattering experiment performed by Stanton and 
Chu (2004). ...................................................................................................................................... 101 

Table 2 – Comparison summary for aluminum disk. 1Comparisons were for rigid/fixed disks, 
but with different dimensions than the aluminum disk. 2The analytic and numerical 
solutions of the Kirchhoff integral for a rigid/fixed disk are identical, so to avoid 
redundancy, these comparisons were not made. *These are revisited in section 4.5.2 with an 
added heuristic correction, known as the penetrable condition. ............................................ 103 

Table 3 – Comparison summary for sand dollar, flat side. 1Models used a rigid/fixed disk. 2This 
comparison is not shown due to the similarity of the analytic and numerical solutions of the 
Kirchhoff integral. *These are revisited in section 4.5.2 with an added heuristic correction, 
known as the penetrable condition. ............................................................................................ 103 

Table 4 – Comparison summary for sand dollar, round side. 1Model used a rigid/fixed spherical 
cap. 2Finite element method simulations for a spherical cap were not run due to insufficient 
resources. *This is revisited in section 4.5.2 with an added heuristic correction, known as the 
penetrable condition. ..................................................................................................................... 104 

Table 5 – Reflection coefficient calculation for aluminum disk....................................................... 124 
 

 

 

 

 

 

 

 

 

 

 

 

 



 11 

Chapter 1  Introduction 

1.1 Sound as a Tool in the Ocean 

Sound is an important tool for gaining insight into phenomena and processes in 

underwater environments. In the ocean, the theory of sound is essential in such broad 

applications as military operations, geological exploration, and biological surveys. Unlike 

electromagnetic waves, acoustic pressure waves are able to propagate long distances in water. 

The typical frequency range used in underwater acoustics is 10 Hz to 1 MHz, with the lower 

frequencies able to travel many kilometers. An important aspect of the field is acoustic 

scattering, that is, understanding how sound reacts to boundaries and obstacles in its path. With 

SONAR (Sound navigation and ranging)—a method for marine vessels to navigate, 

communicate, and detect one another—as its most well-known application, acoustic scattering 

includes the study of the reflection, diffraction, and transmission of sound incident upon a 

particular object. This analysis can often convey detailed information about the nature of the 

object such as its shape, size, or material properties. Knowledge of scattering mechanisms is 

important in such diverse applications as mine detection and investigating zooplankton 

populations. There is a vast literature on the subject of underwater acoustic scattering (Urick, 

1983; Medwin and Clay, 1998). 
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1.2 Scattering from Benthic Shells 

The seafloor is a significant scatterer of sound. Not only essential to the determination of 

bathymetry, knowledge of how sound scatterers from the ocean bottom has commercial, 

military, and scientific ramifications. Sediment type, bottom roughness, and grazing angle all 

are important variables in seafloor scattering. Jackson et al. (1986) presented data showing how 

sediment type alone is not a good predictor of scattering strength, with variations up to 15 dB 

within a single class of seafloor material. Jackson and colleagues also showed how seafloor 

roughness seemed to account for high variability in the acoustic returns at shallow grazing 

angles. An important instance of seafloor roughness is the presence of benthic shelled 

organisms. Studies have suggested that the presence of benthic shells can contribute greatly to 

the scattering strength of the ocean bottom at frequencies above 10 kHz (Stanic et al., 1989; 

Fenstermacher et al., 2001). Not only can shells greatly increase the scattering strength in the 

backwards direction, but they also scatter sound into the seafloor itself. This raises the 

possibility of detecting buried objects at subcritical angles (Stanton and Chu, 2004). However, 

the understanding of benthic shell aggregate scattering remains limited due to an incomplete 

knowledge of the scattering from individual benthic shells.  

Accurately describing the scattering from most marine organisms is a significant 

challenge, in part due to their geometric complexities. In particular, there are no exact analytic 

expressions for the scattering from irregular benthic shells. There are only eleven relatively 

simple geometric shapes with separable coordinate systems, including spheres and infinite 

cylinders, and thus with exact analytic solutions to their scattering (Bowman et al., 1969; 

Anderson, 1950; Faran, 1951).  In addition to geometry, material properties are also an 

important factor in the scattering physics of an object. These material properties are important 
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in determining proper boundary conditions on the surface of the object. Fluid objects simply 

require continuity of pressure and velocity on their boundary. Solid objects, referred to as 

elastic, involve more complicated boundary conditions due to the presence of shear waves. 

Accurately representing the boundary conditions of an object can be just as important as its 

geometry in the modeling of its scattering. 

There has been much work done regarding the scattering of individual zooplankton, 

including shelled organisms, in the water column (Simmonds and MacLennan, 2005). Certain 

animal classes have been approximated as simple geometrical shapes, such as spheres 

(Greenlaw, 1977; Johnson, 1977; Stanton et al., 1987; 2000) and finite cylinders (Stanton, 1989; 

Stanton et al., 1993). More complex representations of certain water-column scatterers have also 

been used. In particular, scattering models based on the distorted wave Born approximation 

(DWBA) have proved useful in modeling fluid-like zooplankton (Chu et al., 1993; Stanton et al., 

1993, 1998; Stanton and Chu, 2000; Lavery et al., 2002; Lawson et al., 2006, Lavery et al., 2007). 

Compared to the understanding developed for scattering from water-column organisms, 

relatively little work has been done regarding the scattering from individual benthic shelled 

organisms. Stanton et al. (2000) used a deformed sphere in both ray-based and modal-series-

based approaches to model scattering from periwinkles (Littorina littorea), a type of benthic 

shelled animal. Stanton and Chu (2004) compared laboratory measurements of scattering from a 

machined round, elastic disk to that of a sand dollar (Dendraster excentricus) and bivalve 

(Dinocardium robustum vanhyningi). Specifically, they observed diffraction effects from the edges 

of the sand dollar through pulse-compression analysis. Though much progress was made in 

these studies, understanding the importance of the geometrical complexities of these benthic 

shelled organisms on the scattering was incomplete, which is the motivation for this study. In 

particular, the focus of this work is to understand acoustic scattering from sand dollars, for 
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which there are controlled laboratory scattering data available (Stanton and Chu, 2004) that can 

give insight and inspire model development. 

 

1.3 Scattering from Sand Dollars 

Sand dollars (Dendraster excentricus) were shown by Fenstermacher et al. (2001) to 

contribute significantly to seafloor scattering levels when in naturally occurring dense 

collections. These benthic echinoderms can form concentrations of up to several hundred per 

square meter in the sandy, shallow water of the west coast of North America (Chia, 1969; 

Highsmith, 1982). Sand dollars have skeletons composed of strong calcite, correctly referred to 

as tests and not shells because of a small amount of external living tissue (Nichols, 1969). These 

tests, clearly visible after the animal has died, resemble thin round disks, as seen in figure 1. 

 

 

Figure 1 – Photograph of sand dollar test, top-view (Stanton and Chu, 2004). 

 

Sand dollars grow to several centimeters in diameter; Chia’s (1969) population records show an 

average adult diameter of 7 cm. Understanding the scattering from individual sand dollars is 
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important for predicting the scattering from aggregations of live organisms found in situ on the 

ocean bottom. 

This work attempts to further understand the scattering from individual sand dollars by 

first modeling them as high aspect ratio oblate objects, namely disks and spherical caps. Along 

with the geometrical complexities, the material properties of sand dollars are important to an 

accurate description of their scattering. One key simplification to the models developed here is 

that a rigid/fixed, rather than elastic, boundary condition is used. This removes the 

complexities of shear waves and internal structure from the analysis and proves to be a good 

approximation at certain angles of orientation with an added heuristic reflection coefficient. 

Though the complex scattering mechanisms of elastic disks have been illustrated by Hefner and 

Marston (2001), they are beyond the scope of this work. Also, the models’ focus is solely on the 

backscattering of incident harmonic plane waves. Both an approximate analytical technique, 

namely the Kirchhoff method, and a fully numerical technique, namely the finite element 

method, are used to model the scattering from sand dollars. Both techniques model them as 

simple high aspect ratio oblate objects (disks and spherical caps). The Kirchhoff method is then 

taken further to model the scattering from the sand dollar’s exact geometry, obtained from high 

computed tomography (CT) scans. All work involves free field scattering, that is, the scatterer is 

away from all boundaries. 

 

1.4 The Kirchhoff Method 

The Kirchhoff method is an approximation of the Helmholtz-Kirchhoff integral, derived 

from the theorems of Gauss and Green. The result of the method is an analytic integral that is 

evaluated over the insonified surface of the scatterer to determine its reflection. There is a vast 
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literature on the subject in both optics and acoustics (Born and Wolf, 1970; Medwin and Clay, 

1998). Because any scattering process often also involves strong diffraction effects, there are 

limitations to the accuracy of the method. In particular, it loses accuracy as wavelength 

increases beyond the characteristic dimensions of the object. Norton et al. (1993) studied the 

diffraction-induced errors of this method in the scattering from circular disks.  

In Chapter 2, a brief derivation of the Kirchhoff method is discussed. The resulting 

integral expression is then solved for two objects: a sphere and a finite cylinder. The results are 

compared to the sphere’s exact modal series solution and the finite cylinder’s modal-series-

based approximation. Next, the Kirchhoff integral expression is solved for a disk and spherical 

cap, the two objects that approximate the shape of each side of the sand dollar. Finally, a 

method for solving the Kirchhoff method’s integral numerically is presented. It is based on 

creating a mesh conforming to the surface of the scatterer and summing the integral over the 

resulting elements. This approach is valuable because it does not require the object’s surface to 

be separable and thus can be used on arbitrarily complex scatterers. Finally, the numerical 

approach is tested against the previous analytic solutions of the Kirchhoff integral for the 

sphere, finite cylinder, disk, and spherical cap. 

 

1.5 The Finite Element Method 

 Broadly defined, a numerical technique is a way of approximating continuous problems 

with discrete solutions. The idea of numerical analysis arose long before computers, evidenced 

by very old techniques such as Newton’s and Euler’s methods. However, the surge in 

computing power over the past several decades has greatly expanded the scope and power of 

using numerical techniques for solving problems. In the context of acoustic scattering, a few 
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distinct numerical techniques have risen in popularity, such as the T-matrix and finite element 

methods. The T-matrix method is a formally exact numerical solution to the wave equation. 

Introduced by Waterman (1969), this approach has been used to study the scattering and 

diffraction of thin circular disks (Kristensson and Waterman, 1982; Norton et al., 1993; Stanton et 

al., 2007).  

An approach to approximating solutions to partial differential equations and integral 

equations, the finite element method is a general numerical technique with a broad scope of 

applications. It stemmed from the work of applied mathematicians, physicians, and engineers 

in the mid twentieth century; each community was interested in approximating solutions to 

increasingly complex continuous problems (Huebner, 1975). The first mention of the term 

“finite element method” was by Clough (1960) to describe plane elasticity. Earlier, Courant 

(1943) used piecewise continuous functions over triangular elements to study the St. Venant 

torsion problem. The mathematical foundations of the finite element method were solidified in 

the early 1970s (Strang and Fix, 1973; Babuska and Aziz, 1973), and it has become a popular 

numerical technique in a wide variety of fields. Early use of the finite element method in the 

study of acoustics focused on internal problems such as acoustics of an enclosure, structural 

vibration, and waveguides (Gladwell, 1966; Craggs, 1972; Nefske et al., 1982; Petyt, et al., 1976). 

As techniques have been developed to deal with the infinite domain of scattering problems, the 

finite element method has been adapted for them as well (Hunt et al., 1975; Bettess, 1977; Gan et 

al., 1993; Berenger, 1994; Thompson, 2006). 

In Chapter 3, the theory behind the finite element method and its application to acoustic 

scattering problems are discussed. Techniques for reducing numerical error in two and three 

dimensions are presented. The program COMSOL Multiphysics® is then explored for its use in 

predicting the scattering from sand dollars. The accuracy and limitations of this method are 
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explored by again solving problems with known solutions, scattering from a rigid/fixed infinite 

cylinder and a rigid/fixed sphere. 

 

1.6 Comparison to Experiment 

In Chapter 4, the results from both the Kirchhoff method and finite element method 

models are compared with published (Stanton and Chu, 2004) experimental results. In Stanton 

and Chu (2004), forward scattering and backscattering from a sand dollar test, a bivalve shell, 

and a machined aluminum disk of similar size were measured over a range of angles of 

orientation. Model results based on the finite element method and analytic and numerical 

solutions to the Kirchhoff method are compared to the experimental results from the aluminum 

disk and the two faces of the sand dollar. These comparisons are conducted at a single 

frequency, 70 kHz, over a range of angles of incidence.  

As the wavelength used is similar in size to the dimensions of the sand dollar and 

aluminum disk, certain inaccuracies show up in the use of the Kirchhoff method, as mentioned 

before. However, near normal incidence to the main faces of the sand dollar and aluminum disk 

(referred to as broadside), this approach results in good agreement between the predicted and 

measured scattering. The finite element method is able to model some of the experimental data 

at higher angles of orientation in addition to working well near broadside. Errors due to the use 

of a rigid/fixed boundary condition are discussed and a heuristic approach to representing the 

true penetrable condition of the scatterers by means of an added reflection coefficient is 

developed. 
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1.7 Overview of Study 

To summarize, Chapter 2 discusses the Kirchhoff method and the resulting solutions for 

two shapes similar to a sand dollar. Chapter 3 discusses the finite element method and its 

application in modeling the scattering by a sand dollar. Chapter 4 compares the results of the 

models with experimental scattering data for an aluminum disk and sand dollar. A heuristic 

correction to the models is discussed as well to account for the use of the rigid/fixed rather than 

elastic boundary conditions. Chapter 5 summarizes the thesis and offers recommendations for 

future work. 
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Chapter 2 The Kirchhoff Method 

2.1 Introduction 

In this chapter, models for understanding the backscattering from individual sand dollars 

are created through use of the Kirchhoff method. A brief overview of the Kirchhoff method is 

presented, which results in an analytic integral, referred to as the Kirchhoff integral, which 

approximates the backscattering amplitude of an object when exposed to an incident harmonic 

plane wave. The Kirchhoff integral is tested for two shapes with known solutions, namely 

spheres and finite cylinders. However, because sand dollars have complicated shapes, for 

which there are no analytic solutions to the Kirchhoff integral, they are represented in this 

chapter by objects with simpler geometries that incorporate the sand dollar’s high aspect ratio 

oblate shape, namely round disks and spherical caps. These objects are all rigid/fixed, based on 

the assumption that this is a good approximation of the sand dollar’s boundary condition. 

Finally, a technique for solving the integral numerically for any shape, regardless of geometric 

complexities, is presented. Numerical solutions to the Kirchhoff integral are then compared to 

the analytic solutions for a sphere, finite cylinder, disk, and spherical cap. 

 

2.2 Theoretical Background 

The Kirchhoff method’s derivation begins with the theory of wave propagation 

proposed by Christian Huygens. Described in detail by Born and Wolf (1970), Huygens’ 

principle is that each point on an advancing wave front can be considered a source of secondary 
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spherical wavelets. Together, these wavelets form the new wave front as it propagates. Using 

the theorems of Gauss and Green, analytic expressions for these wavelets can be written. In 

scattering problems, these wavelets are analyzed on the surface of the scatterer, resulting in the 

scattered pressure field. Medwin and Clay (1998) summarize the derivation, giving the 

Helmholtz-Kirchhoff integral, 
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This is an expression for the scattered pressure at position x
r
 in terms of its value along the 

surface of the scatterer, σ . Each differential element dσ  on the object’s surface has position r′r  

and outward unit normal n̂ . The term rσ  is the distance from the surface element to position x
r
, 

| |r x rσ ′= −r r
 and k ( 2 /π λ= , where λ  is the wavelength) is the acoustic wavenumber. The 

Kirchhoff approximation simplifies the integral by assuming that each differential element 

reflects sound in a ray-like manner; each element behaves just as a part of a tangent infinite 

planar interface would (Medwin and Clay, 1998). This means that the scattered pressure can be 

written in terms of the incident pressure and the reflection coefficient IR  that would result from 

such an interface. Implicit in this approximation is that only the insonified or “front” of the 

object contributes to scattering. The field in the shadow or “back” of the object is zero. 

Therefore, the integral for the scattered pressure is only evaluated on the scatter’s insonified 

surface,  
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To simplify further, the incident field is considered to be a harmonic plane wave, written in its 

time independent form as 0( ) ik r
incp r p e ′⋅′ =

r rr
, with amplitude 0p  and wave vector k

r
, where 
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ˆk kk=
r

 and k̂  is a unit vector in the direction of the wave’s propagation. (Throughout this 

work, only harmonic waves are considered, so the time dependence is omitted). Inserting the 

expression for the incident field into the integral gives 
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(2.3) 

Two further simplifications are made. First, the scatterer is considered to have a rigid/fixed 

boundary condition; this is defined as one where both the gradient of pressure and the fluid 

velocity are zero on the boundary. The reflection coefficient for a rigid/fixed interface is always 

equal to one, regardless of angle of orientation. Second, the scattered pressure is only calculated 

at a distance from the object much larger than the object’s dimensions. To do this, the 

coordinate system must be oriented so that the scatterer is located at the origin. Then the 

distance from the origin to the point x
r
, defined as | |r x= r

,  must satisfy r d>> , where d  is a 

typical object dimension. When this is the case, r  is a good approximation of the rσ  term in the 

denominator. The rσ  in the exponent must be approximated more carefully due to the 

importance of the phase, 
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(2.4) 

When the scattered pressure is calculated in the backwards direction, opposite to the direction 

of the incident wave, this can be rewritten as, 

 ˆr r r kσ ′≈ + ⋅r
. (2.5) 

With these approximations, the backscattered pressure (from equation (2.3)) can be expressed as 
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The normal derivative of 
ikre

r
 is assumed to be zero because r  is large, giving 

 
2 2ˆ( 2 )

ikr ikr
i k r i k re e

e i n k e
n r r

′ ′⋅ ⋅ ∂ ≈ ⋅ ∂  

r rr rr
. 

(2.7) 

The integral thus reduces to 
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This is the final Kirchhoff method expression for the backscattered pressure. 

In the far-field 1kr >> , the scattered pressure is defined as 
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where ( )f Ω  is known as the scattering amplitude. It is a function of the spherical angles 

represented by Ω . Thus from equation (2.8), the backscattering amplitude, bsf ,  can be written, 
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(2.10) 

Backscattering amplitude can be used to find target strength (Urick, 1983), 

 2
10log bsTS f= . (2.11) 

The units of target strength are decibels (dB) relative to 1 m2. Target strength is a heavily used 

indicator of scattering strength and is based solely on the properties of the scatterer itself. Only 

backscattering is considered throughout this work, so the subscript bs  can be dropped. This 

expression in equation (2.10) is referred to here as the Kirchhoff integral and can be used to 

calculate the scattering of an object by performing the integral over its insonified surface. 

The Kirchhoff method is also referred to as the physical optics method. By only 

accounting for reflection from the object’s front insonified surface, this method neglects the 
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effects of diffraction. Diffraction effects vary greatly with frequency and object shape, making 

the Kirchhoff method a poor approximation at times. These effects can be explored by 

comparisons with shapes that have known exact solutions or approximations to their scattering, 

such as spheres and finite cylinders. 

 
 

2.3 Scattering from a Sphere 

In this section, the Kirchhoff integral is solved for a rigid/fixed sphere. The results are 

compared to the exact modal series solution for scattering from a rigid/fixed sphere. 

 

2.3.1 Kirchhoff Integral Solution for a Sphere 

The first step involves setting up a spherical coordinate system with radial variable ρ , 

polar variable θ , and azimuth variable ϕ . The Cartesian coordinate system is described with 

unit vectors x̂ , ŷ , and ẑ . Assume a rigid/fixed sphere with radiusa  is centered at the origin 

and consider an incident plane wave 0
ikz

incp p e−=  proceeding in the negative z direction, as 

seen in figure 2.  This orientation is chosen to simplify the limits of integration in the integral.  



 25 

 

Figure 2 – Spherical coordinate system, shown with incoming wave and without scatterer geometry. 

 

It is seen that  
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In this case, the Kirchhoff integral becomes 
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The integral over ϕ  is easily performed, leaving 
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Making the substitution of cosx θ= , 
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the expression for backscattering amplitude becomes 
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Target strength follows from equation (2.11). 

 

2.3.2 Modal Series Solution for a Sphere 

Again consider the spherical coordinate system with a rigid/fixed sphere of radius a  

centered at the origin and an incident plane wave 0
ikz

incp p e−=  traveling in the negative z 

direction. The scattered pressure from a fluid sphere is can be written as a series of modal 

terms: 
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m

p r B P h krθ ϕ θ
∞

=

=∑ , 
(2.17) 

where mP  is the Legendre polynomial and (1)
mh  is the spherical Hankel function of the first kind 

(Anderson, 1950). A rigid/fixed sphere may be thought of as a fluid sphere with infinite 

density. In this case, the coefficient mB  becomes  

 
0

(1)

( ) (2 1) ( )

( )

m
m

m

m

p i m j ka
B

h ka

′− − +=
′

, 
(2.18) 

where mj  is the spherical Bessel function of the first kind. The derivatives marked by the 

primes are with respect to the functions’ argument, ka . For backscattering, 0θ =  and 

(cos ) 1mP θ =  for all values of m . Simplifying, the backscattered pressure from a rigid/fixed 

sphere is 
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0

(1)
0

( ) (2 1) ( ) ( )
( )

( )

m
m m

bs
m m

p i m h kr j ka
p r

h ka

∞

=

′− − +=
′∑ . 

(2.19) 

The backscattering amplitude and target strength can now be found using equations (2.10) and 

(2.11). 

 

2.3.3 Comparison of Kirchhoff Method and Modal Series Solution for a 

Rigid/Fixed Sphere 
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Figure 3 – Target strength of a rigid/fixed sphere of radius 5 cm, from the Kirchhoff method (starred 
line) and modal series solution (smooth line). 

 
 

Figure 3 shows how the Kirchhoff method result seems to converge to the exact solution 

as ka  increases. However, both curves have strikingly different phases for their peak and null 
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patterns. The reason for this is that the Kirchhoff method does not include the effects of 

diffraction around the sphere. The modal series solution includes both the effects of reflected 

and diffracted, or creeping, waves. Described by Franz (1957), creeping waves diffract around 

the object and encircle it multiple times. Watson (1918) and Sommerfeld (1949) described the 

phenomenon in the study of electric waves diffracting around the Earth. Creeping waves 

constantly radiate off energy tangentially from the object; some of that radiates in the 

backwards direction and interferes with the reflected wave. They can be measured 

experimentally by using short sound pulses due to their increased travel distance and time 

(Uberall et al., 1966). These waves can also be influenced by surface waves if the object is elastic. 

With a rigid/fixed boundary condition, however, they only depend on the geometry of the 

scatterer. As ka  increases and these effects of diffraction lessen, the Kirchhoff method provides 

a better approximation to the exact modal series solution. 

 

2.4 Scattering from a Finite Cylinder 

In this section, the Kirchhoff integral is solved for a rigid/fixed finite cylinder. The results 

are compared to an approximate modal series based solution for a rigid/fixed finite cylinder. 

This latter approximation is based on the exact modal series solution for scattering from an 

infinite cylinder. The approximation neglects the effects of the end of the finite cylinder, and is 

therefore most accurate near broadside. Therefore, the Kirchhoff integral for the rigid/fixed 

finite cylinder is solved so the incident wave is normal to the cylinder’s axis.  

 



 29 

2.4.1 Kirchhoff Integral Solution for a Finite Cylinder 

The first step involves defining a cylindrical coordinate system with radial variable r , 

polar variable θ , vertical variable z , and the same Cartesian coordinate system as was defined 

in the previous section. Assume the finite cylinder with length L  and radius a  is centered at 

the origin so that it is lengthwise along the z  axis. An incident plane 0
ikx

incp p e=  wave 

traveling in the positive x direction strikes the cylinder normal to its axis. Because the incoming 

wave arrives at broadside, the cylinder ends are not insonified and therefore do not contribute 

to the scattering as calculated using the Kirchhoff integral. Therefore only the sides of the 

cylinder are considered.  

 

 

Figure 4 – Cylindrical coordinate system, shown with incoming wave and without scatterer geometry. 

 

It can thus be seen that  

 ˆk kx=
r

 

ˆ ˆ ˆcos sinn x yθ θ= +  

(2.20) 
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ˆ ˆ ˆcos sinr a x a y z zθ θ θ′ = + +r
 

d ad dzσ θ= . 

Substituting these expression into the Kirchhoff integral gives 

 /2 3 /2
2 cos

/2 /2

cos
L

i ka

L

ia
f e d dz

π
θ

π

θ θ
λ −

= ∫ ∫ . 
(2.21) 

The integral over z  is straightforward, leaving 

 3 /2
2 cos

/2

cos
2

i kaikaL
f e d

π
θ

π

θ θ
π

= ∫ . 
(2.22) 

It is split in order to help solve 

 3 /2
2 cos 2 cos

/2

cos cos
2

i ka i kaikaL
f e d e d

π π
θ θ

π π

θ θ θ θ
π

 
= + 

 
∫ ∫ . 

(2.23) 

Two substitutions are made: in the first integral, α θ π= − + ; in the second integral, β θ π= − : 

 /2 /2
2 cos 2 cos

0 0

cos cos
2

i ka i kaikaL
f e d e d

π π
α βα α β β

π
− − 

= − + − 
 
∫ ∫ . 

(2.24) 

Both integrals can be solved with help of the relationship (Gaunaurd, 1985) 

 /2
cos

1 1

0

cos 1 [ ( ) ( )]
2

iz xxe dx H z iJ z
π π− = − +∫ , 

(2.25) 

where 1H  is the Struve function of order one, and 1J  is the Bessel function of the first kind of 

order one. Thus, equation (2.24) becomes 

 [ ]1 12 [ (2 ) (2 )]
2

ikaL
f H ka iJ kaπ

π
−= − + . 

(2.26) 

Target strength easily follows from equation (2.11). 
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2.4.2 Modal Series Based Solution for a Finite Cylinder 

 The modal series approximation for the scattering of finite cylinders is based on the 

exact modal series solution for an infinite cylinder. It assumes that end effects are negligible, 

and, therefore, it is much more accurate near broadside than at high angles of incidence. Stanton 

(1988) gives the expression for scattering from a rigid/fixed finite cylinder of length L  and 

radius a : 

 

0
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( ) cos( )m

m
m

iL
f B i mϕ

π

∞

=

− ∆= −
∆ ∑  

(2.27) 

 
where                                       
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2
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and                                         
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m
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B

H ka

ε ′−=
′

. 
(2.29) 

The r̂ terms represent the unit position vectors of the source (subscript i), receiver (subscript r), 

and cylinder’s axis (subscript c). In the case of broadside incidence, 0∆ = . The term ϕ  is the 

angle between the source and receiver vectors in the plane perpendicular to the cylinder axis. 

For the backscattering case, ϕ π= , and therefore cos( ) ( 1)mmϕ = − . The term mε is equal to 1 for 

0m =  and equal to 2 for all other vales of m . Thus, the backscattering amplitude becomes 
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′∑ . 

(2.30) 

Target strength follows from equation (2.11). 
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2.4.3 Comparison of Kirchhoff Method and Modal Series Based Solution 

for a Rigid/Fixed Finite Cylinder 
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Figure 5 – Broadside target strength of a rigid/fixed finite cylinder of length 10 cm and radius 1 cm 
using the Kirchhoff method (starred line) and modal series approximation (solid line). 

 

As with the sphere, there is a discrepancy in the null-peak phase patterns caused by the 

creeping waves not accounted for in the Kirchhoff method. The effects of this are again lessened 

as ka  increases. There seems to be much less of an effect from creeping waves for the finite 

cylinder than for the sphere, as evidenced by the former’s better agreement with the Kirchhoff 

method. It is hypothesized that while the waves diffract relatively well around the entire body 

of the sphere and the curved sides of the cylinder, they do not diffract as well around the flat 

ends of the cylinder. 
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2.5 Kirchhoff Method Approximations for the Sand Dollar 

When an object’s geometry becomes too complex, it may not be possible to obtain a 

closed form solution to the Kirchhoff integral. However, it is possible under some circumstances 

to approximate the complex geometry of the object with a simpler geometry that does have an 

analytic solution to the Kirchhoff integral. A sand dollar is an example of a complex geometry 

where the integral expression cannot be solved analytically due to its irregular shape and 

surface roughness. Generally, sand dollars have flat bottoms and slightly domed tops in 

addition to fine scale surface roughness. In this section, the Kirchhoff integral is solved for 

objects that approximate both of the orientations of the sand dollar. A round disk is used to 

model the flat bottom and a spherical cap is used to model the rounded top. This section starts 

with the use of the Kirchhoff integral to derive scattering from an infinitely thin, rigid/fixed 

disk, as this sheds light on the derivation for the (finite thickness) disk and spherical cap. 

 

2.5.1 Kirchhoff Integral Solution for an Infinitely Thin Disk 

 The first step in solving the Kirchhoff integral for a disk is to start with the simplest case, 

a circular rigid/fixed disk of radius a  and zero thickness. The lack of thickness means that only 

the front round face of the disk is incorporated into the solution. Returning to the cylindrical 

coordinate system, assume the disk is located at the origin, perpendicular to the z axis. The 

incoming wave vector k
r
 forms an angle β  with the z axis, varying over the range of angles 

,
2 2

π π− 
 
 

. 
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Figure 6 – Geometry of the infinitely thin disk. 

 
 

In this coordinate system, the relevant parameters of the Kirchhoff integral are given by 

 ˆ ˆsin cosk k x k zβ β= − +
r

 

ˆ ˆn z= −  

ˆ ˆcos sinr r x r yθ θ′ = +r
 

d rdrdσ θ= . 

(2.31) 

Substituting these into the Kirchhoff integral, the backscattering amplitude is given by 

 
2 sin cos

0 0

2 cos a
i kri

f r e d dr
π

β θβ θ
λ

−−= ∫ ∫ . 
(2.32) 

Abramowitz and Stegun (1965) give an integral definition of a Bessel function of the first kind: 

 
cos

0

( ) cos( )
n

iz
n

i
J z e n d

π
ϑ ϑ ϑ

π
= ∫ . 

(2.33) 

Substituting this expression back into equation (2.32), the backscattering amplitude is  
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0

0

2 cos
( 2 sin )

ai
f rJ kr dr

π β β
λ

−= −∫ . 
(2.34) 

Next, the substitution 2 sinz kr β= −  is made 

 2 sin 2 sin

0 02 2
0 0

2 cos cos
( ) ( )

2 sin 2 sin 2 sin

ka ka
i z dz i

f J z zJ z dz
k k k

β βπ β π β
λ β β λ β

− −− − − −= =∫ ∫  
(2.35) 

Abramowitz and Stegun give the derivative of a Bessel function as 

 1
( ) ( )v v

v v

d
z J z z J z

z dz

µ
µ

µ
−

−
    =    

. 
(2.36) 

Setting 1vµ = = , this simplifies to 

 [ ]1 0( ) ( )
d

zJ z zJ z
dz

= . 
(2.37) 

Substituting and solving, 

 
[ ]

2 sin

1
12 2

0

cos ( 2 sin )cos
( )

2 sin 2sin

ka
i iaJ ka

f d zJ z
k

βπ β β β
λ β β

−− −= =∫  
(2.38) 

The target strength of the rigid/fixed, infinitely thin disk is thus given by  

 2

1( 2 sin )cos
10log

2sin

aJ ka
TS

β β
β

−= . 
(2.39) 

Urick (1983) gives this result in a slightly different form as the target strength of a circular plate. 

 

2.5.2 Kirchhoff Integral Solution for a Disk with Finite Thickness 

 The next step in solving the Kirchhoff integral for the disk is to give it a thickness. There 

are now two different scattering regions of the disk: the flat round face and the curved edge. 

The height of this new edge is the disk’s thickness, T. 
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Figure 7 – Geometry of the disk. 

 
 
The disk is simply a finite cylinder with an extremely high radius to length aspect ratio. 

Therefore, this derivation is like that of the finite cylinder over any angle of incidence. The 

Kirchhoff integral can be split to analyze each of the disk’s elements. These two regions of 

scattering add coherently to give the total scattering amplitude, 

 
face edgef f f= + . (2.40) 

The backscattering amplitude of the face is very similar to before, with the only difference being 

a phase shift due to the face’s negative displacement by T/2, 

 2
cos1( 2 sin )cos

2 sin
ikT

face

ika J ka
f e

ka
ββ β

β
−−= . 

(2.41) 

Next, the scattering from the edge is evaluated. The relevant parameters within the Kirchhoff 

integral are given by 

 ˆ ˆsin cosk k x k zβ β= − +
r

 (2.42) 
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ˆ ˆ ˆcos sinn x yθ θ= +  

ˆ ˆ ˆcos sinr a x a y zzθ θ′ = + +r
 

d ad dzσ θ= . 

Substituting into the integral expression, the backscattering amplitude is given by  

 /2 /2
2( sin cos cos )

/2 /2

sin cos
T

i ka kz
edge

T

i
f e ad dz

π
β θ β

π

β θ θ
λ

− +

− −

= −∫ ∫ . 
(2.43) 

The integral over z  is straightforward: 

 /2
2 sin cos

/2

sin( cos )sin
cos

2 cos
i ka

edge

ia kT
f e d

π
β θ

π

β β θ θ
π β

−

−

−= ∫ . 
(2.44) 

To solve this integral it first must be split. Then a substitution α θ= −  is made in one of the 

resulting integrals: 

 0 /2
2 sin cos 2 sin cos

/2 0

sin( cos )sin
cos cos

2 cos
i ka i ka

edge

ia kT
f e d e d

π
β θ β θ

π

β β θ θ θ θ
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−
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 
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(2.45) 

 /2 /2
2 sin cos 2 sin cos

0 0

sin( cos )sin
cos cos

2 cos
i ka i ka
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ia kT
f e d e d

π π
β α β θβ β α α θ θ

π β
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 
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(2.46) 

These integrals may now be solved with help from equation (2.25), giving 

 [ ]1 1

sin( cos )sin
2 (2 sin ) (2 sin )

2 cosedge

ia kT
f H ka iJ ka

β β π β β
π β

−= − +   . 
(2.47) 

Gaunaurd (1985) presents a similar derivation and arrives at the same result in his discussion of 

total insonification of a finite cylinder. The target strength of the rigid/fixed disk is thus given 

by 
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(2.48) 

 

2.5.3 Kirchhoff Integral Solution for a Spherical Cap 

The next object that the Kirchhoff integral is solved for is a spherical cap, modeling the 

sand dollar’s top side. Returning to the spherical coordinate system, assume a sphere of radius 

a  centered at the origin. A slice perpendicular to the x-y plane is made through the top half of 

the sphere, and everything below is discarded, leaving only the top cap of the sphere. Another 

way to define the cap is by polar angle, 0θ = to some angle η . The incident wave makes an 

angle β  with the z axis. 

 

 

Figure 8 – Geometry of the spherical cap. 

 
 

The relevant parameters of the Kirchhoff integral are given by 
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 ˆ ˆsin cosk k x k zβ β= − +
r

 

ˆ ˆ ˆ ˆcos sin sin sin cosn x y zϕ θ ϕ θ θ= + +  

ˆ ˆ ˆcos sin sin sin cosr a x a y a zϕ θ ϕ θ θ′ = + +r
 

2 sind a d dσ θ θ ϕ= . 

(2.49) 

Substituting into the Kirchhoff integral and simplifying,  

 22
2 (sin cos sin cos cos )

0 0

(sin cos sin cos cos )sin
2

i kaika
f e d d

ηπ
β ϕ θ β θβ ϕ θ β θ θ θ ϕ

π
−= −∫ ∫ . 

(2.50) 

This author is not aware of an analytic solution, so this double integral is to be evaluated 

numerically.  

 

2.6 Solving the Kirchhoff Integral Numerically 

Using a simplified approximation to the geometry of a complex shape in order to obtain a 

closed form, analytic solution to the Kirchhoff integral can introduce errors into the predicted 

scattering associated to the geometric differences. In cases where analytic simplification is 

impractical, or the resulting errors are unacceptable, it is possible to use a numerical approach 

to solve the Kirchhoff integral that does not rely on simplifying the object’s shape. In this 

section, a method is presented for solving the Kirchhoff integral numerically, regardless of the 

object’s irregularities.  
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2.6.1 Creating Geometry and a Mesh in COMSOL Multiphysics 

The first step in solving the Kirchhoff integral numerically is to create a surface mesh of 

the object of interest. This is simply a collection of small connected triangles that attempt to 

match the surface of the object. The size of these triangles determines how well they conform to 

the shape. One simple method for creating the object’s surface mesh is through use of the finite 

element software COMSOL Multiphysics® (ver. 3.2a), referred to in this work simply as 

COMSOL. COMSOL is a commercially available program for solving finite element method 

problems, which will be explored further in Chapter 3. For now, it is used for its capability to 

model and mesh complex geometries.  

Within COMSOL, the geometry of the object of interest can be created using either the 

GUI or script. Objects can be created from scratch or imported as computer-aided design (CAD) 

files. Once the geometry is created, a mesh can be generated to conform to it. The mesh for a 

three dimensional object consists of tetrahedrons in the interior and triangles on the surfaces. 

The vertices of these shapes are known as mesh vertices. The mesh is created by defining input 

parameters that regulate the size of the triangles and tetrahedrons and how well they conform 

to curved parts of the geometry. The size of the triangles on the geometry’s surface will have an 

effect on the accuracy of numerical solution to the integral, since each triangle acts a differential 

element. 

 The mesh may be represented by two sets of information: coordinates and connectivity. 

The coordinate information lists the location of each of the numbered mesh vertices. The 

connectivity lists the vertices (by number) that make up each of the mesh elements, in some 

systematic way (e.g. counterclockwise for triangles, right hand rule for tetrahedrons). In this 

way, each mesh tetrahedron is defined by a connectivity of four vertices whose locations are 
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contained in the coordinate list. Similarly, each triangle is defined by three vertices. Because the 

Kirchhoff method uses a surface integral, only the information regarding the surface triangles is 

important. This can easily be separated and assembled within COMSOL into two arrays. 

 

2.6.2 Determination of Insonified Surface 

 Once the two surface mesh arrays have been compiled, the next step is to determine 

which triangular surface elements should contribute to the solution. Because the Kirchhoff 

integral is only applied to the insonified region of the object, any surface in the shadow needs to 

be ignored. When solving the integral analytically, the proper surface of the object is defined by 

the limits of integration. Since these are not defined here, there needs to be some way to 

eliminate the triangle elements that are not in the line of sight of the incoming wave vector. This 

problem is similar to one in computer graphics, where several surfaces or polygons share the 

same set of pixels. In order to display the correct surface (e.g. that which is closest to the 

viewer), a process known as hidden surface removal determines what information each pixel 

should display (De Berg et al., 1997). Newell’s algorithm is a similar method for determining 

which polygons are hidden (Newell, 1972). A simplified version of Newell’s algorithm is 

developed here in order to determine which triangles are hidden by others, from the view-point 

of the incoming wave vector. 

 To use the method developed here, a step must be taken before the mesh is created. In 

order to avoid complicated coordinate transforms later on, the incoming wave vector is set to 

always coincide with the negative z direction. The object can be rotated in COMSOL so that the 

desired angle of incidence is achieved. After the mesh is created for this orientation of the 

object, the simplified version of Newell’s algorithm can be applied: 
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1) Sort elements by max z value 

2) Minmax test in x 

3) Minmax test in y 

4) Rasterization test 

For the first step, the elements can be sorted by their maximum z values by comparing the 

positions of each triangle’s three vertices. Because the incoming wave vector travels in the 

negative z direction, the elements higher on this list are more likely to be part of the front 

surface.  

The remainder of the algorithm involves determining whether elements are covered by 

others. If the projections into the x-y plane of two elements intersect, then the element with the 

greater z value covers the other. Elements which are covered by others must lie on a surface that 

is not in the line of sight of the incoming wave vector and therefore in the shadow. These 

hidden elements are removed from the list as they are found. The tests proceed by starting with 

the first element in the list and comparing it to all the other elements below it in the list. When 

these comparisons are finished and covered elements are removed, the second element in the 

list is compared to all the other elements below it. This process eliminates redundant 

comparisons.  

The first test is a minmax test in x: determining whether the two elements share any x 

values by comparing minimum and maximum values. If this test fails (they do not share 

common x values), the second element is not covered by the first, and the next element is 

compared. 
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Figure 9 – Examples of minmax tests in x for Newell’s algorithm. 

 
 
If the two elements pass the minmax tests in x and y and share values in both x and y, a 

rasterization test is performed. Given a sampling rate, a rectangle of x-y points is created; the 

coordinates of these points are determined by the minimum and maximum x and y values of 

the first element. Each point is sampled to determine if it is part of either triangular element. 

Points on the border between two triangles are considered part of neither. If a point is part of 

both, then the first element must cover the second, which is then removed from the list. This test 

is run only after a set of elements has passed both minmax tests to save run time. 

 

2.6.3 Evaluating the Kirchhoff Integral Numerically 

With the final list of elements representing the object’s front surface, the Kirchhoff 

integral can now be evaluated. There is some ambiguity in the direction of the normal vectors 

that must be clarified. Due to the numbering scheme in the COMSOL connectivity list, 
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determining the cross product of the triangle edges does not always provide an outward 

normal. This can be fixed by noting that the dot product of the normal and unit wave vectors 

should either be negative or zero, because the faces are either oriented toward the positive z 

direction or are perpendicular to it. None of the triangles can be facing the negative z direction 

after applying Newell’s algorithm. For the elements perpendicular to the wave vector, it is not 

important if the normal vector faces inward or outward since the dot product and integrand 

reduces to zero in either case. For the other faces however, it is simply enough to compute the 

absolute value of the dot product of the normal and unit wave vectors and set it negative. For 

the inck r′⋅
r r

 term in the exponent, the average of the dot products of the wave vector and 

position vectors of each vertex is used. The area of each triangle is computed for the differential 

element term. Finally, the expression is summed over each triangle element and the Kirchhoff 

integral can be numerically evaluated. 

 

2.7 Comparison of Methods for Solving the Kirchhoff 

Integral 

The numerical method of solving the Kirchhoff integral can be tested against some of the 

analytic solutions derived earlier. In each case, the mesh is made fine enough so that there is 

good agreement between the two methods. The mesh size at which the numerical solution 

converged to the analytic solution varied in each case, and proved highly dependent on the 

geometry of the scatterer. Therefore, a simple rule for determining an appropriate mesh size 

was not ascertained.  
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2.7.1 Sphere 

A sphere of radius 5 cm was created in COMSOL and meshed, seen in figure 10. Because 

of its symmetry, no care needed to be taken to orient the sphere in any fashion. 

 

Figure 10 – Surface mesh of a sphere of radius 5 cm in COMSOL. 

 
 
This mesh had a maximum element size of 0.5 cm, giving 4266 surface triangle elements. 

Extracting the connectivity and node coordinate information, these elements were subjected to 

the Newell’s algorithm in the technical computing software MATLAB® (ver. 7.2.0.232). To 

visualize the effect of this, the remaining triangles are seen plotted in figure 11. 
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Figure 11 – Surface mesh of a sphere in MATLAB after Newell’s algorithm.  

 
 
Newell’s algorithm has the desired effect of removing the elements out of the line of site of the 

incoming wave vector from above. To ensure that each of the triangles in the plot were 

represented by an element and not simply formed by surrounding triangles, the midpoint of 

each were plotted, seen in figure 12. 
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Figure 12 - Surface mesh of a sphere in MATLAB after Newell’s algorithm, with triangle midpoints. 

 
 
Taking a closer look, it is clear that Newell’s algorithm kept all the desired triangular elements. 

 

Figure 13 – Close view of surface mesh of sphere, with midpoints. 

 
 



 48 

Finally, the Kirchhoff integral was solved numerically over each element and compared to the 

analytic solution for a rigid/fixed sphere (section 2.3.1) for different values of ka, the product of 

the wavenumber and the sphere’s radius, shown in figure 14. 
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Comparison of methods for solving Kirchhoff integral for a sphere
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Figure 14 – Target strength of a rigid/fixed sphere with radius 5 cm by solving the Kirchhoff integral 
analytically (solid line) and numerically (stars). 

 
 
By using a sufficiently fine surface mesh, the numerical solution converged to the analytic 

solution.   
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2.7.2 Finite Cylinder 

A finite cylinder of length 10 cm and radius 1 cm centered at the origin was created in 

COMSOL, oriented with its lengthwise axis along the x axis so that the incoming wave vector, 

along the negative z axis, met it at broadside. The cylinder was then meshed with a maximum 

element size of 0.15 cm, producing 11170 surface elements. 

 

Figure 15 – Surface mesh of a finite cylinder in COMSOL. 

 
 
Again, the triangular elements were run through Newell’s algorithm in MATLAB, with the 

remaining ones shown in figure 16. 
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Figure 16 – Surface mesh of a finite cylinder in MATLAB after Newell’s algorithm.  

 

Note that the elements on the ends of the cylinder were not removed. This is due to a 

shortcoming in the rasterization test in Newell’s algorithm. Because the elements are vertical, 

they cannot be sampled in the x-y plane. However, because the dot product of the unit normal 

and unit wave vector is zero, their contribution amounts to zero regardless. The Kirchhoff 

integral can now be evaluated over all the remaining elements and compared to the analytic 

solution for a finite cylinder (section 2.4.1) over a range of values of ka, the product of the 

wavenumber and the cylinder’s radius. Again, the numerical results converge to the analytic 

solution, as seen in figure 17. 
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Kirchhoff integral solved analytically
Kirchhoff integral solved numerically

 

Figure 17 - Target strength of a rigid/fixed finite cylinder with length 10 cm and radius 1 cm by solving 
the Kirchhoff integral analytically (solid line) and numerically (stars). 

 

2.7.3 Disk 

A disk of radius 5 cm and thickness 1 cm, centered at the origin, was created in COMSOL, 

oriented so that the incoming wave vector along the negative z axis arrived normal to the round 

face. The surface mesh had a maximum element size 0.25 cm, giving 10640 surface triangles.  
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Figure 18 - Surface mesh of a disk in COMSOL. 

 

The triangular elements were then run through Newell’s algorithm in MATLAB, with the 

results shown in figure 19. 
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Figure 19 - Surface mesh of a disk in MATLAB after Newell’s algorithm. 
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Many of the vertical elements on the side of the disk remain, as they did on the ends of the finite 

cylinder; however, they do contribute to the solution. Finally, the Kirchhoff integral can be 

solved numerically over all the remaining elements, and the solution is compared to the 

analytic solution (section 2.5.2). Again the numerical results matched the analytic solution, as 

seen in figure 20. 
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Kirchhoff integral solved analytically
Kirchhoff integral solved numerically

 

Figure 20 - Target strength of a rigid/fixed disk with radius 5 cm and thickness 1 cm by solving the 
Kirchhoff integral analytically (solid line) and numerically (stars). 
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2.7.4 Spherical Cap 

To generate the spherical cap, a sphere of radius 10 cm was first created in COMSOL, 

centered at the origin. The top 30 degrees of the sphere were kept, leaving a cap of radius 5 cm 

and thickness 1.34 cm. The cap was oriented so that the incoming wave along the negative z 

axis arrived normal to its top. It was meshed with a maximum element size of 0.25 cm, giving 

9382 surface elements. 

 

Figure 21 - Surface mesh of a spherical cap in COMSOL. 

 

The triangular elements were then run through Newell’s algorithm in MATLAB, with the 

results plotted in figure 22. 
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Figure 22 - Surface mesh of a spherical cap in MATLAB after Newell’s algorithm. 

 

Finally, the Kirchhoff integral was solved numerically over all the remaining elements and 

compared to the analytic solution for a spherical cap (section 2.5.3) over a range of ka, where a 

is the radius of the cap. Again, the numerical results match the analytic solution, as seen in 

figure 23. 
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Kirchhoff integral solved analytically
Kirchhoff integral solved numerically

 

Figure 23 - Target strength of a rigid/fixed spherical cap with radius 5 cm and radius 1.34 cm by 
solving the Kirchhoff integral analytically (solid line) and numerically (stars). 

 

2.8 Chapter Summary 

In this chapter, the Kirchhoff method has been explored for understanding scattering 

from objects with and without known exact solutions. The derived solutions from this method 

have their limitations and may not be valid in many situations, depending on factors such as 

boundary condition and incident wavelength. However, as will be seen, this method proves to 

be useful in studying the scattering from sand dollars at certain frequencies and angles of 

orientation. The analytic solutions for a disk and spherical cap are compared to experimental 

scattering data from a sand dollar in Chapter 4. The numerical approach to solving the 

Kirchhoff integral was presented in cases where representing a complex geometry with a 
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simpler one introduces too many errors. This approach has been shown to agree very well with 

analytic solutions to the Kirchhoff integral. Also in Chapter 4, the scattering from a rigid/fixed 

three dimensional model of the sand dollar is calculated with this numerical method and 

compared to experimental results. 
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Chapter 3 The Finite Element Method 

3.1 Introduction 

In this chapter, the theory behind the finite element method and its use in acoustic 

scattering problems are explained. This is presented in the form of a general problem of acoustic 

scattering from a rigid/fixed object. A technique for reducing random numerical error in the 

solution of two and three dimensional acoustic scattering problems is then presented. COMSOL 

Multiphysics, a program for solving finite element method problems is explored. A particular 

focus concerns the radiation condition used by this program. The finite element method is 

tested for scattering from a rigid/fixed infinite cylinder and a rigid/fixed sphere, problems with 

known exact solutions. The methodology for modeling the sand dollar using the finite element 

method is then discussed.  

 

3.2 Theoretical Background 

The finite element method is a general numerical technique for solving boundary value 

problems. Its application to acoustic scattering problems is now shown by introducing a general 

three dimensional problem. Consider a harmonic plane wave 0
ik x

incp p e ⋅=
r r

 that is incident upon 

a rigid/fixed object in free space, represented by Ω . The surface of the object is labeled Γ .  
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Figure 24 – Domain of three dimensional scattering problem, shown with incident wave. 

 

The governing equation for the total pressure field in the domain Ω  from the object is the 

Helmholtz equation, the time independent form of the wave equation, 

 2 2 0p k p∇ + =  inΩ . (3.1) 

The total pressure is the sum of the incident and scattered pressure fields, 

 
inc scatp p p= + . (3.2) 

Therefore, the scattered pressure field, scatp , also satisfies the Helmholtz equation in Ω , 

 2 2 0scat scatp k p∇ + =   in Ω . (3.3) 

The goal of the problem is to determine the scattered pressure field.  

On the boundary of the object, Γ , the rigid/fixed condition requires that the normal 

gradient of total pressure is zero, 

 0n p⋅∇ =r
, (3.4) 

where n
r
 is the surface normal of the object. This is easily written for the scattered pressure in 

terms of the incident pressure, 

 
scat incn p n p⋅∇ = − ⋅∇r r

. (3.5) 
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To complete the boundary value problems, a condition of the behavior of the scattered pressure 

at infinity is required, given by the Sommerfeld radiation condition (Sommerfeld, 1949) in three 

dimensions as 

 
lim 0scat

scat
r

p
r ikp

dr→∞

∂  − =  
  

. 
(3.6) 

This condition describes the behavior of the scattered pressure as r , the distance from the 

scatterer, goes to infinity. 

Note that the problem above is defined on the unbounded domain Ω . The finite 

element method used in this thesis requires a domain where the boundary value problem is 

defined to be bounded. Therefore, the Sommerfeld condition is substituted with an approximate 

radiation condition defined on the boundary infΓ  that contains the object. The geometry of this 

new bounded region, labeled Ω , is seen in figure 25. 

 

 

Figure 25 – Geometry of a bounded three dimensional scattering problem. 

 

At infΓ , the condition used instead of equation (3.6) is defined as 
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scat

scat

p
ikp

r

∂ =
∂

 on infΓ  
(3.7) 

and equation (3.3) is defined over Ω . Therefore, the boundary value problem that will be 

solved with the finite element method here is summarized as 

 2 2 0scat scatp k p∇ + =   in Ω , 

scat incn p n p⋅∇ = − ⋅∇r r
  on Γ , 

scat
scat

p
ikp

r

∂ =
∂

  on infΓ . 

(3.8) 

 To apply the finite element method, the boundary value problem, given in (3.8), is 

written in the form of a variation equation, as shown in the following development. First the 

condition on Ω  is multiplied by a weight function w V∈  and integrated over the domain, 

resulting in 

 * 2 2 0scat scatw p k p d
Ω

 ∇ + Ω = ∫   w V∀ ∈ . (3.9) 

V  is a linear space of functions which will be defined in a moment, and the asterisk denotes the 

operation of conjugation. The first term on the left side on equation (3.9) is integrated by parts, 

using the identity 

   2( )div f g f g f g∇ = ∇ ⋅∇ + ∇ . (3.10) 

This identity is valid for any two scalar fields f  and g  which are twice differentiable. 

Integrating this identity over the domain Ω  and using the divergence theorem (Strang, 1991) 

gives 

 2f gd f gd f g nd
Ω Ω ∂Ω

∇ Ω = − ∇ ⋅∇ Ω + ∇ ⋅ Ω∫ ∫ ∫
r

, (3.11) 
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where n
r
 is the unit normal vector outward from the boundary of Ω . Note that the right side of 

this expression requires f  and g  to be only first-order differentiable. Using equation (3.11) in 

equation (3.9) with f  substituted with *w  and g by scatp  gives 

 ( )* 2 * * 0scat scat scatw p k w p d w p nd
Ω ∂Ω

−∇ ⋅∇ + Ω + ∇ ⋅ Γ =∫ ∫
r

  w V∀ ∈ . (3.12) 

Using inf∂Ω = Γ + Γ  and the boundary conditions in (3.8) gives the following variational 

equation for the scattered field scatp V∈  

 ( )
inf

* 2 * * *
infscat scat scat incw p k w p d ikw p d w p nd

Ω Γ Γ

∇ ⋅∇ − Ω − Γ = − ∇ ⋅ Γ∫ ∫ ∫
r

    

                                                                                               w V∀ ∈ . 

(3.13) 

From this equation, the conditions on the space V  are deduced: the functions have to be square-

integrable with square-integrable gradients. Equation (3.13) can be written in compact form by 

introducing the notation 

 ( )
inf

* 2 * *
inf( , )scat scat scat scata w p w p k w p d ikw p d

Ω Γ

= ∇ ⋅∇ − Ω − Γ∫ ∫  (3.14) 

 *( ) incw w p ndγ
Γ

= − ∇ ⋅ Γ∫
r

 (3.15) 

so that the variational equation is 

 ( , ) ( )scata w p wγ=   w V∀ ∈ . (3.16) 

Note that the form ( , )a ⋅ ⋅  is linear with respect to the first and second arguments and that ( )γ ⋅  is 

linear with respect to its argument as well. 

 The finite element method is a numerical technique to construct approximate solutions 

to variational problems such as (3.16). An approximation to the infinite-dimensional space V  is 



 63 

constructed. This space is denoted hV  and has the property that it is a subspace of V . The 

problem is solved in this new space, that is, the goal is to determine hp  such that 

 ( , ) ( )h h ha w p wγ=   h hw V∀ ∈ . (3.17) 

 The space hV  is a finite dimensional space, which means that a basis can be constructed 

using a finite number of terms. The elements of that basis are denoted ( )i xφ r
, with {1,..., }i N∈ . 

N  is the number of elements in the basis as well as the dimension of the space hV . Therefore, 

hp  and hw  may be represented as 

 

1

( ) ( )
N

h
i i

i

p x p xφ
=

=∑
r r

, 
(3.18) 

 

1

( ) ( )
N

h
i i

i

w x w xφ
=

=∑
r r

. 
(3.19) 

Substituting these expressions into equation (3.17) and using the linearity of ( , )a ⋅ ⋅  and ( )γ ⋅  

results in the algebraic equation 

 w Kp w F⋅ = ⋅
rr r r
  Nw R∀ ∈r . (3.20) 

The term 1( ,..., )TNp p p=r
 is the vector components of hp  in the basis iφ , and likewise for w

r
. 

This condition is satisfied if and only if the vector p
r
 is the solution of the matrix equation 

 Kp F=
rr
. (3.21) 

The components of the matrix K  and the vector F
r
 are defined as 

 ( , )ij i jK a φ φ= , 

( )i iF γ φ=
r

  , {1,..., }i j N∈ . 

(3.22) 

To solve equation (3.21), direct or iterative solvers are used (Golub and Van Loan, 1996). 
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The finite element method discretizes the domain of a problem into small connected 

subdomains of some polygonal shape (usually triangles or tetrahedrons). This pattern of 

discretization is referred to as the domain’s mesh. The individual subdomains within the mesh 

are known as the finite elements themselves. Each finite element is formed by nodes on its 

boundary, and elements are related by their shared nodes. If an element only has nodes at its 

vertices, it is said to be linear. Quadratic elements are formed by designating the midpoints of 

the line segment between the vertices as nodes. Even higher order elements may be formed 

with additional nodes, but their utility is limited with the techniques available (Becker et al., 

1981). 

 

Figure 26 – Examples of two linear (left) and three quadratic (right) triangular finite elements, used to 
discretize two dimensional problems. The black dots represent the positions of the nodes. 

 

In this work, quadratic triangular Lagrange elements were chosen for the discretization of the 

two dimensional domains and quadratic quadrilateral Lagrange elements for the three 

dimensional domains. Quadratic quadrilateral elements are composed of ten nodes, one for 

each of the four vertices and one on each midpoint. 



 65 

 

Figure 27 – Example of a three dimensional quadrilateral quadratic finite element. The black dots 
represent the positions of the ten nodes. 

 

The basis functions are chosen based on the nodes of the problem. In this work, each 

basis function iφ  is a piecewise quadratic function, equal to one at node i  and equal to zero at 

all other nodes. With this choice of basis, the solutions for scattered pressure at the nodes are 

conveniently contained within the vector p
r
. 

The major simplification in the above derivation concerns the outer boundary on which 

the simplified Sommerfeld radiation condition was assigned. The difficulty in solving scattering 

problems with the finite element lies with trying to reconcile infinity with a finite numerical 

domain. Because the goal in many cases, as it is here, is to understand the scattering from an 

object located in free space, away from boundaries and obstacles, scattering problems usually 

take place in an infinite domain. Since it is impossible to create an infinite numerical domain in 

the finite element method, such a problem must be simplified to only the scatterer and a finite 

region surrounding it. The scattered pressure can be determined anywhere within this 

surrounding region through the finite element method, but not outside of it. A technique for 

getting around this shortcoming is presented in the next section. 
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The exterior of the surrounding medium region must be given a boundary condition that 

represents free space extending to infinity, known as a radiation condition. This boundary must 

model the effects of the free space it represents; specifically, it must not reflect outgoing waves 

back into the domain. Local absorbing boundary conditions (Atkinson, 1949; Wilcox, 1956), the 

Dirichlet to Neumann (DtN) boundary condition (Hunt, 1974), infinite elements (Bettess, 1977), 

and absorbing boundary layers (Berenger, 1994) are all techniques that seeks to eliminate this 

reflection. In the above derivation, a simplification of the Sommerfeld radiation condition was 

used. It is not the ideal choice for a radiation condition and can introduce errors into the 

calculation. However, as is seen in a later section, this radiation condition is necessary to solve 

the problem with COMSOL Multiphysics. 

 

3.3 Technique for Reducing Numerical Error in Two and 

Three Dimensions 

Increasing the number of elements and thus nodes in the solution process is one way to 

reduce the error in a finite element method approximation. Another method seeks to reduce the 

random numerical error after the solution process has taken place. This is possible in some 

applications of acoustic scattering due to the importance of point measurements. When 

determining an object’s target strength, it is not necessary to solve for the scattered fields at all 

points. Equations (2.9) and (2.11) show how only a single point measurement of scattered 

pressure is needed. The finite element method approximates the solution at many locations, 

namely each node point. If the approximation is examined at one single node is used, there will 

be some numerical error present. However, if a great number of node point approximations can 
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be interpreted to determine a single point’s value, this numerical error can be diminished. 

Techniques are now presented where a single value of scattered pressure at any point can be 

calculated from the knowledge of the field on a circle or a sphere surrounding the scatterer, in 

two and three dimensions respectively. The location of the calculated pressure is arbitrary 

outside of the immediate vicinity of the scatterer. This allows the scattered pressure to be 

determined at points well beyond the finite element method’s numerical domain. In this way, 

scattered pressure can be determined in the far-field and used to calculate target strength. 

 

3.3.1 Circular Integral Method 

First, a polar coordinate system centered at the scatterer is defined with radial variable 

r  and polar variable ϕ . Start with the Helmholtz equation for the scattered field, 

 2 2 0scat scatp k p∇ + = . (3.23) 

The Laplacian operator in polar coordinates is defined as 

 2
2

2 2

1 1
( )r

r r r r ϕ
∂ ∂ ∂∇ = +
∂ ∂ ∂

. 
(3.24) 

The Helmholtz equation is expanded to include the Laplacian, 

 2
2

2 2

1 1
( ) 0scat scat

scat

p p
r k p

r r r r ϕ
∂ ∂ ∂+ + =
∂ ∂ ∂

. 
(3.25) 

Assume scatp  is the sum of a unknown number of separable functions of r  and ϕ , 

 ( , ) ( ) ( )scatp r rτ τ
τ

ϕ α β ϕ=∑ . (3.26) 

A term in this series for scatp  is inserted back into equation (3.25), and separation of variables is 

performed: 
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 2
2 2

2

1
( )

r
r k r

r r
τ τ

τ
τ τ

β α δ
β ϕ α

∂ ∂ ∂= − − =
∂ ∂ ∂

 
(3.27) 

where nδ  is a constant. Because of the requirement that ( ) ( 2 )τ τβ ϕ β ϕ π= + , the equation in ϕ  

can be solved as 

 inC e ϕ
τ τβ =  (3.28) 

with  

 2nτδ = − , (3.29) 

where n  is any integer. The expression for r  in equation (3.27) becomes 

 2
2 2 2 2

2
( ) 0r r k r n

r r
τ τ

τ
α α α∂ ∂+ + − =

∂ ∂
. 

(3.30) 

Performing a substitution of variables, krξ = , this becomes the well-known equation 

 2
2 2 2

2
( ) 0nτ τ

τ
α αξ ξ α ξ
ξ ξ

∂ ∂+ + − =
∂ ∂

, 
(3.31) 

whose solutions are the Bessel functions of the first and second kind, ( )nJ ξ  and ( )nY ξ  

(Abramowitz and Stegun, 1965). Two linear independent combinations of these solutions are 

the Hankel functions of the first and second kind, (1)( ) ( ) ( )n n nH J iYξ ξ ξ= +  and 

(2)( ) ( ) ( )n n nH J iYξ ξ ξ= − , 

 (1) (2)( ) ( )i n i nE H kr F H krτα = + , (3.32) 

where iE  and iF  are constants. Because τα  and τβ  are functions of integer n , the summation 

in equation becomes 

 
(1) (2)( , ) ( ) ( ) in

scat n n n n
n

p r A H kr B H kr e ϕϕ
∞

=−∞

 = + ∑ , 
(3.33) 

where nA  and nB  are constants. 
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The n-dimensional Sommerfeld radiation condition (Sommerfeld, 1949) is given as, 

 1
2lim 0

n

r

u
r iku

dr

−

→∞

 ∂ − =  
  

. 
(3.34) 

For the two dimensional scattered pressure, the condition becomes 

 
lim 0scat

scat
r

p
r ikp

dr→∞

∂  − =  
  

. 
(3.35) 

Using the definition of the derivatives of the Hankel functions (Abramowitz and Stegun, 1965), 

 (1) (1) (1)
1( ) ( ) ( )n n n

n
H kr H kr H kr

kr +′ = −  

(2) (2) (2)
1( ) ( ) ( )n n n

n
H kr H kr H kr

kr +′ = − , 

(3.36) 

the term in equation (3.35) is 

 
(1) (1) (1)

1

(2) (2) (2)
1

( ( ) ( ) ( ))
( )

( ( ) ( ) ( ))

n n n n
inscat

scat
n

n n n n

n
A H kr H kr iH kr

p krr ikp k r e
ndr

B H kr H kr iH kr
kr

ϕ
+∞

=−∞
+

 − − ∂ − =  
 + − −
  

∑ . 

(3.37) 

Taking the limit as r → ∞ , 

 ( )(1) 2 42
( )

n
i kr

nH kr e
kr

π π

π
− −

→  
(3.38) 

 ( )(2) 2 42
( )

n
i kr

nH kr e
kr

π π

π
− − −

→  
(3.39) 

 3
( )

2 42
lim[ ( )] ( 2 )

n
i kr inscat

scat n
r

n

p k
r ikp B e e

dr

π π
ϕ

π

∞ − − −

→∞
=−∞

 ∂ − = − 
 

∑ . 
(3.40) 

To satisfy the Sommerfeld condition in equation (3.35), 0jnB = . The expression for scattered 

pressure becomes 
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(1)( , ) ( ) in

scat n n
n

p r A H kr e ϕϕ
∞

=−∞

= ∑ . 
(3.41) 

Now consider a circle of radius R  centered at the origin. If this circle completely surrounds the 

scatterer, then scattered pressure can be defined on it: 

 
(1)( , ) ( ) in

scat n n
n

p R A H kR e ϕϕ
∞

=−∞

= ∑ . 
(3.42) 

Multiplying both sides by ime ϕ−  and integrating over ϕ  around the circle,  

 2 2
(1)

0 0

( , ) ( )im in im
scat n n

n

p R e Rd A H kR e e Rd
π π

ϕ ϕ ϕϕ ϕ ϕ
∞

− −

=−∞

= ∑∫ ∫  
(3.43) 

 2
(1)

0

( , ) 2 ( )im
scat m mp R e d A H kR

π
ϕϕ ϕ π− =∫  

(3.44) 

Solving for the coefficient nA , 

 2

(1)
0

1 1
( , )

2 ( )
in

n scat
n

A p R e d
H kR

π
ϕϕ ϕ

π
−= ∫ . 

(3.45) 

Therefore, the final expression for the scattered pressure at point ( , )r ϕ  depends on an integral 

around a circle of radius R : 

 
0

2(1)

0 0(1)
0

1 ( )
( , ) ( , )

2 ( )
ininn

scat scat
n n

H kr
p r e p R e d

H kR

π
ϕϕϕ ϕ ϕ

π

∞
−

=−∞

= ∑ ∫ . 
(3.46) 

 

3.3.2 Spherical Integral Method 

In three dimensions, consider a scatterer located at the origin of at the origin of a 

( , , )r θ ϕ  spherical coordinate system. Again start with the Helmholtz equation, (3.23). The 

Laplacian operator in spherical coordinates is defined as 
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 2
2 2

2 2 2 2 2

1 1 1
( ) (sin )

sin sin
r

r r r r r
θ

θ θ θ θ ϕ
∂ ∂ ∂ ∂ ∂∇ = + +
∂ ∂ ∂ ∂ ∂

. 
(3.47) 

Assume scatp is the sum of a number of separable functions of r , θ , and ϕ : 

 ( , , ) ( ) ( ) ( )scatp r rτ τ τ
τ

θ ϕ α β θ γ ϕ=∑ . (3.48) 

A term in this series is inserted back into the Helmholtz equation, and separation of variables is 

performed, 

 2 2
2 2 2 2

2

1 sin sin
( ) (sin ) sinr k r

r r
τ τ τ

τ
τ τ τ

γ θ α θ βθ θ ε
γ ϕ α β θ θ

∂ ∂ ∂ ∂ ∂= − − − =
∂ ∂ ∂ ∂ ∂

 
(3.49) 

where τε  is a constant. Because of the condition ( ) ( 2 )τ τγ ϕ γ ϕ π= + , the equation in ϕ  can be 

solved as  

 ijC e ϕ
τ τγ = , (3.50) 

where Cτ  is a constant and j  is any integer, with  

 2jτε = − . (3.51) 

Inserting (3.51) into (3.49), separation of variables is performed again, 

 2
2 2 2

2

1 1
(sin ) ( )

sin sin

j
r k r

r r
τ τ

τ
τ τ

β αθ δ
β θ θ θ θ α

∂ ∂ ∂ ∂− = − − =
∂ ∂ ∂ ∂

, 
(3.52) 

where τδ is a constant. Schwinger et al. (1998) give that the equation in r  is equal to the product 

 ( 1)n nτδ = − + , (3.53) 

where n  is an integer. Substituting cosx θ=  into the equation for θ  gives the well known 

equation 

 2 2
2

2 2
(1 ) 2 ( ( 1) ) 0

1

j
x x n n

x x
τ τ

τ
β β β

θ
∂ ∂− − + + − =
∂ ∂ −

,  
(3.54) 
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whose solutions are the Legendre functions of the first and second kind with degree n  and 

order j , ( )j
nP x  and ( )j

nQ x  (Abramowitz and Stegun, 1965). Because x  is only defined on the 

interval [ 1,1]− , ( )j
nQ x  is undefined and ( ) (cos )j j

n nP x P θ= is the only solution. Therefore,  

 (cos )j
nD Pτ τβ θ= , (3.55) 

where Dτ  is a constant. The equation for r  in (3.52) becomes 

 2 2 21
( ) ( 1) 0r k r n n

r r
τ

τ

α
α

∂ ∂ + − + =
∂ ∂

. 
(3.56) 

A substitution krξ =  gives 

 2
2 2

2
2 ( ( 1)) 0n nτ τ

τ
α αξ ξ α ξ
ξ ξ

∂ ∂+ + − + =
∂ ∂

, 
(3.57) 

whose solutions of this differential equation are the spherical Bessel functions of the first and 

second kind, ( )nj ξ  and ( )ny ξ  (Abramowitz and Stegun, 1965). Two linear independent 

combinations of these are the spherical Hankel functions, (1)( ) ( ) ( )n n nh j iyξ ξ ξ= +  and 

(2)( ) ( ) ( )n n nh j iyξ ξ ξ= − : 

 (1) (2)( ) ( )n nE h kr F h krτ τ τα = + , (3.58) 

with constants Eτ  and Fτ . Because τα , τβ , and τγ  are functions of integers j  and n , the 

summation for scattered pressure in equation (3.48) becomes 

 ( )(1) (2)( , , ) ( ) ( ) (cos )j ij
scat jn n jn n n

n j

p r A h kr B h kr P e ϕθ ϕ θ
∞ ∞

=−∞ =−∞

= +∑ ∑ , 
(3.59) 

where jnA  and jnB  are constants. Recall the three dimensional Sommerfeld radiation condition 

in equation (3.6). Using the definition of the derivatives of spherical Hankel functions, 
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 (1) (1) (1)
1( ) ( ) ( )n n n

n
h kr h kr h kr

kr +′ = −  

(2) (2) (2)
1( ) ( ) ( )n n n

n
h kr h kr h kr

kr +′ = − , 

(3.60) 

the term in the limit of the Sommerfeld condition becomes 

 
( )scat

scat

p
r ikp

dr

∂ − =  

(1) (1) (1)
1

(2) (2) (2)
1

[ ( ) ( ) ( )]
(cos )

[ ( ) ( ) ( )]

jn n n n
j ij

n
j n

jn n n n

n
A h kr h kr ih kr

krkr P e
n

B h kr h kr ih kr
kr

ϕθ
+∞ ∞

=−∞ =−∞
+

 − − 
 
 + − − − 
 

∑ ∑ . 

 

(3.61) 

Taking the limit r → ∞ , 

 ( )(1) 2 21
( )

n
i kr

nh kr e
kr

π π− −
→  

(3.62) 

 ( )(2) 2 21
( )

n
i kr

nh kr e
kr

π π− − −
→  

(3.63) 

 ( )
2lim[ ( )] [ 2 ] (cos )

n
i kr j ijscat

scat jn n
r

j n

p
r ikp B e P e

dr

π π ϕθ
∞ ∞ − − −

→∞
=−∞ =−∞

 ∂ − = − 
 

∑ ∑  
(3.64) 

To satisfy the Sommerfeld condition, 0jnB = . Equation (3.59) becomes 

 
(1)( , , ) ( ) (cos )j ij

scat jn n n
n j

p r A h kr P e ϕθ ϕ θ
∞ ∞

=−∞ =−∞

= ∑ ∑ . 
(3.65) 

Legendre functions follow two important recurrence relations (Abramowitz and Stegun, 1965): 

 1 2 1/2
1( ) ( 1) ( ) ( ) ( ) ( )P z z zP z P zµ µ µ

ν ν νν µ ν µ+ −
− = − − − +   

(3.66) 

 
1P Pµ µ

ν ν− − = . (3.67) 
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These allow any Legendre function j
nP  to be written as a combination of others with both n  

positive and [ , 1 1, ]j n n n n∈ − − + −K . This simplifies the summation limits in the expression for 

scattered pressure:  

 
(1)

0

( , , ) ( ) (cos )
n

j ij
scat jn n n

n j n

p r A h kr P e ϕθ ϕ θ
∞

= =−

=∑∑  
(3.68) 

Now consider a sphere of radius R  centered at the origin with coordinates 0 0( , , )R θ ϕ . If this 

completely surrounds the scatterer, the scattered pressure can be defined on it: 

 
0(1)

0 0 0
0

( , , ) ( ) (cos )
n

ijj
scat jn n n

n j n

p R A h kR P e ϕθ ϕ θ
∞

= =−

=∑∑ . 
(3.69) 

Multiply both sides by 0
ˆˆ

ˆ 0(cos ) ijj
nP e ϕθ − , where n̂  and ĵ  are each some integer, 

 0
ˆˆ

ˆ0 0 0( , , ) (cos ) ijj
scat np R P e ϕθ ϕ θ − =  

0 0
ˆˆ(1)

ˆ0 0
0

( ) (cos ) (cos )
n

ij ijj j
jn n n n

n j n

A h kR P e P eϕ ϕθ θ
∞

−

= =−
∑∑ . 

(3.70) 

This expression is then integrated over the surface of the sphere, 

 
0

2
ˆˆ 2

ˆ0 0 0 0 0 0

0 0

( , , ) (cos ) sinijj
scat np R P e R d d

π π
ϕθ ϕ θ θ ϕ θ−

∫ ∫  

0

2
ˆˆ ( )(1) 2

ˆ0 0 0 0 0
00 0

( ) (cos ) (cos ) sin
n

i j jj j
jn n n n

n j n

A h kR P P e R d d
π π

ϕθ θ θ ϕ θ
∞

−

= =−

= ∑∑∫ ∫ . 

(3.71) 

The integral over 0ϕ  on the right is zero when ˆj j≠  and 2π  when ˆj j= . Therefore the 

expression simplifies to 

 
0

2
ˆˆ

ˆ0 0 0 0 0 0

0 0

( , , ) (cos ) sinijj
scat np R P e d d

π π
ϕθ ϕ θ θ ϕ θ−

∫ ∫  
(3.72) 
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ˆ ˆ(1)
ˆ ˆ0 0 0 0

00

2 ( ) (cos ) (cos )sinj j
n n njn

n

A h kR P P d
π

π θ θ θ θ
∞

=

= ∑∫ . 

A substitution of variables 0cos xθ =  into the right side of the expression gives 

 
0

2
ˆˆ

ˆ0 0 0 0 0 0

0 0

( , , ) (cos ) sinijj
scat np R P e d d

π π
ϕθ ϕ θ θ ϕ θ−

∫ ∫
1

ˆ ˆ(1)
ˆ ˆ

01

2 ( ) ( ) ( )j j
n n njn

n

A h kR P x P x dxπ
∞

=−

= ∑∫ . 
(3.73) 

Legendre functions of the same degree and different order are orthogonal on the interval [ 1,1]−  

(Abramowitz and Stegun, 1965): 

 1

1

( ) ( ) 0a a
b cP x P x dx

−

=∫ , 
(3.74) 

when b c≠ . Therefore, the expression becomes 

 
0

2
ˆˆ

ˆ0 0 0 0 0 0

0 0

( , , ) (cos ) sinijj
scat np R P e d d

π π
ϕθ ϕ θ θ ϕ θ−

∫ ∫
1

ˆ(1) 2
ˆ ˆ ˆˆ

1

2 ( ) ( )j
n njn

A h kR P x dxπ
−

= ∫ . 
(3.75) 

Now jnA  can be solved for, 

 
0

2

0 0 0 0 0 0

0 0
1

(1) 2

1

( , , ) (cos ) sin

2 ( ) ( )

ijj
scat n

jn
j

n n

p R P e d d

A

h kR P x dx

π π
ϕθ ϕ θ θ ϕ θ

π

−

−

=
∫ ∫

∫
. 

(3.76) 

Two cases must be considered: 0j ≥  and 0j < . When 0j ≥ , there is an expression for the 

integral in the denominator of (3.76) (Abramowitz and Stegun, 1965): 

 1
2

1

( )!
( )

( 1 / 2)( )!
j

n

n j
P x dx

n n j−

+=
+ −∫ . 

(3.77) 

Inserting this back into the expressions for jnA  and scattered pressure in (3.68), 
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0

2

0 0 0 0 0 0

0 0
(1)

( , , ) (cos ) sin ( 1 / 2)( )!

2 ( )( )!

ijj
scat n

jn
n

p R P e d d n n j

A
h kR n j

π π
ϕθ ϕ θ θ ϕ θ

π

− + −
=

+

∫ ∫
 

(3.78) 

 (1)

(1)
0 1

1 ( 1 / 2)( )! ( ) (cos )
( , , )

2 ( )! ( )

j ijn
n n

scat
n j n

n n j h kr P e
p r

n j h kR

ϕθθ ϕ
π

∞

= =

+ −=
+∑∑  

0

2

0 0 0 0 0 0

0 0

( , , ) (cos ) sinijj
scat np R P e d d

π π
ϕθ ϕ θ θ ϕ θ−×∫ ∫ . 

(3.79) 

The second case is when 0j < . Legendre functions of negative order can be written as  

 ( 1)!
( ) ( )

( 1)!
j j

n n

n j
P x P x

n j
−+ +=

− +
. 

(3.80) 

Equation (3.76) can be rewritten as 

 

 

0

2

0 0 0 0 0 0

0 0
21

(1)

1

( , , ) (cos ) sin

( 1)!
2 ( ) ( )

( 1)!

ijj
scat n

jn

j
n n

p R P e d d

A
n j

h kR P x dx
n j

π π
ϕθ ϕ θ θ ϕ θ

π

−

−

−

=
 + +
 − + 

∫ ∫

∫

.  

(3.81) 

Now the integral in the denominator can be evaluated: 

 
0

2

0 0 0 0 0 0

0 0
2

(1)

( , , ) (cos ) sin

( 1)! ( )!
2 ( )

( 1)! ( 1 / 2)( )!

ijj
scat n

jn

n

p R P e d d

A
n j n j

h kR
n j n n j

π π
ϕθ ϕ θ θ ϕ θ

π

−

=
 + + −
 − + + + 

∫ ∫
 

(3.82) 

Plugging this back into the expression for scattered pressure (3.68) , 

 (1)

2
0 (1)

1 ( 1 / 2)( )! ( ) (cos )
( , , )

2 ( 1)!
( )! ( )

( 1)!

j ijn
n n

scat
n j n

n

n n j h kr P e
p r

n j
n j h kR

n j

ϕθθ ϕ
π

∞

= =−

+ +=
 + +−  − + 

∑∑  

0

2

0 0 0 0 0 0

0 0

( , , ) (cos ) sinijj
scat np R P e d d

π π
ϕθ ϕ θ θ ϕ θ−×∫ ∫ . 

(3.83) 

Using the expression in (3.80), this becomes  



 77 

 (1)

(1)
0

1 ( 1 / 2)( )! ( ) (cos )
( , , )

2 ( )! ( )

j ijn
n n

scat
n j n n

n n j h kr P e
p r

n j h kR

ϕθθ ϕ
π

−∞

= =−

+ +=
−∑∑  

0

2

0 0 0 0 0 0

0 0

( , , ) (cos ) sinijj
scat np R P e d d

π π
ϕθ ϕ θ θ ϕ θ−−×∫ ∫ . 

(3.84) 

Comparing (3.79) when 0j ≥  to (3.84) when 0j < , it is clear the expression for scattered 

pressure may be written in one form for all j : 

 (1)

(1)
0

( 1 / 2)( )! ( ) (cos )1
( , , )

2 ( )! ( )

j ijn
n n

scat
n j n n

n n j h kr P e
p r

n j h kR

ϕθ
θ ϕ

π

∞

= =−

+ −
=

+∑∑  

0

2

0 0 0 0 0 0

0 0

( , , ) (cos ) sinj ij
scat np R P e d d

π π
ϕθ ϕ θ θ ϕ θ−×∫ ∫  

(3.85) 

This equation can be written so that the surface integral is more general: 

 (1)

0 0 0 0(1)
0

( )
( , , ) ( , , ) ( , , ) * ( , , )

( )

n
n

scat jn jn scat
n j n n

h kr
p r R R p R d

h kR
θ ϕ θ ϕ θ ϕ θ ϕ

∞

= =− Γ

= Φ Φ Γ∑∑ ∫  

and                    
2

(2 1)( )!
( , , ) (cos )

4 ( )!
j ij

jn n

n n j
R P e

R n j
ϕθ ϕ θ

π
+ −

Φ =
+

, 

(3.86) 

where Γ  is the surface of the sphere and * denotes the complex conjugate. 

 Equations (3.46) and (3.86) give the expressions for scattered pressure at any point in 

two and three dimensions, based on the knowledge of the field on a circle and a sphere 

surrounding the scatterer respectively. These expressions are very helpful in conjunction with 

the finite element method, which solves for the scattered pressure over a finite domain around 

the object. The scattered pressure can be ascertained on a circle or sphere from the finite element 

method, and then used to find its value at any point by the above techniques. In addition, they 

prove to help remove significant amounts of numerical error. 
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3.4 Implementation of COMSOL Multiphysics 

COMSOL Multiphysics (ver. 3.2a) was used in this work for the finite element method 

simulations. 

3.4.1 COMSOL Methodology 

3.4.1.1 Geometry and Elements 

The process of creating scatterer geometry within COMSOL was discussed when solving 

the Kirchhoff integral numerically. In finite element method scattering problems, the 

surrounding medium subdomain must be created as well. To simplify the implementation of 

the radiation condition on the boundary, this exterior region is modeled as a sphere in three 

dimensions and a circle in two. The radius of this sphere (or circle) is labeled as A . To help 

visualize, figure 28 shows two sample finite element domains in COMSOL. The sphere and 

circle represent the surrounding medium subdomains, while the box and square represent the 

scatterer subdomains. 
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Figure 28 – Sample three dimensional and two dimensional finite element domains in COMSOL. 

 

After the geometries of these two subdomains—scatterer and surrounding medium—are 

defined, the elements themselves can be created. Identical to the process in the Kirchhoff 

chapter, this consists of discretizing the domain into quadrilaterals (or triangles in two 

dimensions). In this application, the size of the elements is again important to the accuracy of 

the solution. Elements may be defined by a maximum allowable size, maxh . The effects of 

element size will be explored shortly. 

 
 

3.4.1.2 Defining the Partial Differential Equations 

The next step is to create the partial differential equations that are used in the numerical 

calculation. This is done by defining the coefficients of the generic partial differential equations 

used in COMSOL. Every subdomain and boundary between subdomains requires an equation. 

In the case of acoustic scattering, the subdomain equations describe the traveling waves in 
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terms of total pressure, the sum of incident and scattered fields. Boundary equations are used to 

represent both the boundary condition between the scatterer and surrounding medium and the 

radiation condition at the edge of the numerical domain.  

The general equation for subdomains in COMSOL is 

 ( )c u u au u fα γ β∇ ⋅ − ∇ − + + + ⋅∇ = , (3.87) 

where the coefficients must be defined. Let u  represent the total pressure: 

 
tot inc scatu p p p= = + . (3.88) 

From COMSOL’s solution for total pressure, scattered pressure is easily solved for by 

subtracting out the known incident field. To describe the pressure field, equation (3.87) should 

model the Helmholtz equation (3.1). This is easily done by configuring the coefficients as 

follows: 

 

2

1

0

0

0

0

c

a k

f

α
γ

β

=
=
=
= −
=
=

 

(3.89) 

Terms like k  can either have their values entered explicitly into the equations, or they can be 

defined separately to allow for symbolic equations. 

 The first boundary condition that has to be described is between the scatterer and the 

surrounding medium. This can be modeled as a variety of different boundaries: rigid/fixed, 

soft, fluid, and potentially elastic (although this was not tested). COMSOL provides two generic 

equations that can be used to model a Neumann or Dirichlet boundary condition, 

 ˆ ( )n c u u qu g hα γ µΤ⋅ ∇ + − + = −  (3.90) 
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hu r= , 

where n̂  is the outward normal vector from the surface andµ is a Lagrange multiplier. Several 

of the coefficients here ( , ,c α γ ) are already defined in the subdomain description in (3.89). 

Substituting these values and rewriting, 

 n̂ u qu g h µΤ⋅∇ + = −   

hu r= . 

(3.91) 

By manipulating the coefficients of this equation, all of the necessary boundary conditions can 

be replicated. For example, in a rigid/fixed boundary, the normal gradient of pressure is zero 

on the boundary. To model this, a Neumann boundary condition is used and all remaining 

coefficients are set to zero: 

 ˆ 0n u⋅∇ =  

0 0= . 

(3.92) 

For a soft boundary condition, the pressure goes to zero at the interface. To model this, h is set 

at a nonzero value in order to include the second equation. The simplest method is to set it 

equal to one. Then because of the Lagrange multiplier, the first equation imposes no restriction 

onu and can thereby be ignored. The second equation simply ends up being 

 u r=  (3.93) 

and r can be set to any value; this is zero in the case of the soft boundary condition. Similar steps 

can be taken to create a fluid boundary, requiring continuity of both pressure and pressure 

gradient at the interface. In this work, the rigid/fixed condition was always used. 

The need to model free space at the boundary of the finite surrounding medium 

subdomain in acoustic scattering problems has been discussed. One way to do this is to use a 
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simplified version of the Sommerfeld radiation condition, introduced in a previous section as 

equation (3.7), 

 
scat

scat

p
ikp

r

∂ =
∂

. 
(3.94) 

This is an equation for the scattered field, not the total field for which COMSOL solves. 

Therefore, the scattered field must be written in terms of the total field and the known incident 

field, 

 
scat incp u p= − . (3.95) 

The simplified Sommerfeld condition becomes 

 ˆ ( ) ( )inc incn u p ik u p⋅∇ − = − . (3.96) 

The incident field must now be defined. For an incident plane wave of amplitude 0p  and wave 

vector k
r
 at position r

r
, 

 ( )
0

i k r
incp p e ⋅=

r r

. (3.97) 

Inserting this into equation (3.96) and rearranging terms, 

 ( )
0ˆ ˆ( ) i k rn u iku i n k k p e ⋅ ⋅∇ − = ⋅ − 

r rr
. (3.98) 

Looking again at COMSOL’s equations in (3.90), this condition can be represented by 

configuring the coefficients as follows: 

 

( )
0ˆ( )

0

0

i k r

q ik

g i n k k p e

h

r

⋅

= −

 = ⋅ − 

=
=

r rr

 

(3.99) 
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3.4.1.3 The Solution Phase 

The large matrix equations are automatically compiled by COMSOL and run through one 

of its linear solvers. For two-dimensional problems, the UMFPACK solver was used. This solves 

the matrix equations directly using LU factorization. For the three-dimensional problems 

requiring much more memory, the GMRES iterative solver was used instead. While a slower 

solver than UMFPACK, GMRES allowed for calculations with many more elements. 

 

3.4.2 Accuracy of the Solution 

The accuracy of the finite element method approximation can be judged several ways. It 

can simply be interpreted at a single node point as the difference between the exact solution and 

the computed value, 

 ( ) ( ) ( )FEMe x u x u x= − . (3.100) 

There are a variety of error norms that give a more global understanding of a solution’s 

accuracy. Two examples are the energy and maximum norms (Becker et al., 1981),  

 1/2

2 2|| || ( ( ) ) ( )Ee e x e x d
Ω

 
′ = + Ω  

 
∫ , 

(3.101) 

 || || max | ( ) |
x

e e x∞ ∈Ω
= . (3.102) 

Whenever using the finite element method (or any numerical technique), error in the 

solution is expected as a result of simply discretizing the domain. Other error effects are specific 

to the problem; in this case, it is the use of the simplified Sommerfeld radiation condition. In 

order to help understand and attempt to separate the effects from the discretization and the 

radiation condition, two unitless parameters were created: EPW  and SMD . 
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Given a mesh of elements with maximum element size maxh  for a problem with 

wavenumber k ,  

 

max max

2
EPW

h h k

λ π= = . 
(3.103) 

In this way, there are at least EPW  elements per wavelength. By increasing EPW , the 

elements will get smaller relative to wavelength. Therefore this parameter is a measure of the 

discretization, generally with larger values resulting in more accurate solutions. 

 For a spherical surrounding medium domain of radius A  centered at the origin, with a 

scatterer whose maximum extension from the origin is distance maxr′ , and with wavenumber k , 

define 

 
max( )SMD k A r′= − . (3.104) 

This parameter is the minimum distance a scattered wave must travel before it reaches the outer 

boundary of the surrounding medium in terms of wavenumber. Because the simplified 

Sommerfeld radiation condition has an error of order 
1

o
r

 
 
 

, increasing SMD  should 

increasing the accuracy of the solution.  

 

3.4.2.1 Two Dimensional Test: Rigid/Fixed Infinite Cylinder (Max Error Norm) 

The finite element method with the simplified Sommerfeld condition can be tested for 

several problems with known solutions. A simple problem that can be tested is scattering from 

a rigid/fixed infinite cylinder, which has a known scattering solution that does not vary along 

its length (Rayleigh, 1945). For an incident plane wave 0
ikx

incp p e= ,  
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(1)

0
0

cos( ) ( )scat m m
m

p p B m H krϕ
∞

=

= ∑  
(3.105) 

 
and                                        

(1)

( )

( )

m
m m

m
m

i J ka
B

H ka

ε ′−=
′

, 
(3.106) 

where mε is equal to 1 for 0m =  and equal to 2 for all other vales of m . Because of the 

symmetry of the infinite cylinder, this problem may be thought of as the scattering from a 

rigid/fixed circle in two dimensions. 

 The two dimensional problem can be run in COMSOL, and the approximations at each 

node can be compared to the exact solutions at those points. Assume an infinite cylinder lies 

along the z axis with radius a . The cylinder experiences an incident field of ikxe , representing a 

plane wave traveling in the positive x direction with amplitude 0 1p =  and wavenumber k . To 

model the problem in COMSOL, a circle of radius 1a =  centered at the origin represents the 

cylinder. Because of symmetry, 

 ( )SMD k A a= − . (3.107) 

This parameter was varied over several values and was used to determine A , the radius of the 

outer domain. The parameter EPW  was varied from two to eight, representing the minimum 

number of elements per wavelength. The solution was generated in COMSOL and the scattered 

field was determined at each node point.  
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Figure 29 – Total and scattered pressure fields from a rigid/fixed infinite cylinder, ka = 10 in 
COMSOL. The incident wave arrives from the left side of the domain. 

 
 
The maximum error norm was determined by comparing the solutions at every node and 

finding the maximum deviation from the exact solution. This was done at two separate 

frequencies, determined by ka, the product of the wavenumber and the cylinder’s radius. 
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Figure 30 – Max error norm versus EPW for COMSOL approximation of scattering from a rigid/fixed 
infinite cylinder at ka = 1. 
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Figure 31 – Max error norm versus EPW for COMSOL approximation of scattering from a rigid/fixed 
infinite cylinder at ka = 5. 
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As expected, decreasing element size also decreases the error norm of the solution. The 

error slows its reduction and in some cases stops it as when the elements reach a certain size. 

The error that remains for the curves that have leveled out is a result of the radiation condition 

used and cannot be fixed by discretizing the domain further. As expected, within this range of 

small element size, domain size is a key factor in the amount of error in the solution. Increasing 

the domain size helps to reduce error when further discretization has no effect. 

 

3.4.2.2 Two Dimensional Test: Rigid/Fixed Infinite Cylinder (Infinite Form Function) 

Because target strength is undefined for infinite objects, the infinite form function f ∞  

can be used for comparison instead. Similar to the scattering amplitude of a finite object, the 

infinite form function of a cylinder of radius a  is defined only in the far-field 1kr >>  (Stanton, 

1992): 
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For a cylinder aligned with the z axis, the infinite form function for a rigid/fixed cylinder from 

an incident plane wave 0
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In the backscattering direction, ϕ π= , giving 
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Again, the only interest here is in this backscattering direction, so the subscript will be dropped.  
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The value of scattered pressure used to find the infinite form function in equation (3.108) 

can be determined two ways from COMSOL’s solution. It can either be taken as a simple point 

measurement from the solution itself, or it can be calculated using the circular integral method 

in equation (3.46). This latter method was used by taking the solution at a series of points on a 

circle surrounding the scatterer.  

If scatp  is taken as a point measurement, in order to ensure that it is in the far-field, it is 

determined at distance d  from the scatterer where 1kd >> . In the example below, 20kd = . 

The size of the domain was based on 50SMD = , and element size was based on 6EPW = . 
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Figure 32 – Absolute value of infinite form function of a rigid/fixed infinite cylinder, using the modal 
series solution and COMSOL (point method). EPW = 6 and SMD = 50. 

 

There are errors throughout most of the ka  region, with them growing with ka.  
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 For the circular integral method, the same values for SMD  and EPW  were used. The 

integral was performed on a circle with radius 1.1 times the cylinder radius, surrounding the 

scatterer. 
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Figure 33 – Absolute value of infinite form function of a rigid/fixed infinite cylinder, using the modal 
series solution and COMSOL (circular integral method). EPW = 6 and SMD = 50. 

 
 
The circular integral method succeeded in removing much of the error from the point 

measurement method. There is still some small error visible, caused by the discretization and 

radiation condition. 

 To determine whether or not the solution has converged with the given values of SMD  

and EPW , convergence tests were run. First, setting 50SMD = , and varying EPW , the 

infinite form function was found for different values of ka  using the circular integral method. 
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Figure 34 – Error in the infinite form function approximation of a rigid/fixed infinite cylinder at SMD 
= 50. 

 
 

The solution has definitely converged to a very small error at 6EPW ≥  for both cases. Next 

setting 6EPW = , the same process was run while varying SMD . 
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Figure 35 – Error in the infinite form function approximation of a rigid/fixed infinite cylinder at EPW 
= 6. 

 

It first should be noted that the error scale used in this figure is much smaller than that of the 

previous figure. Therefore, although the approximations seem to oscillate at higher values of 

SMD , the solution seems to have converged into a very small error region. From this figure it is 

also seen that at a certain point, increasing domain size does not seem to reduce the error effects 

of the radiation condition. 

 

3.4.2.3 Three Dimensional Test: Rigid/Fixed Sphere 

A three dimensional scattering problem with known solution is that of a rigid/fixed 

sphere (equation (2.19)). The added dimension greatly increases the number of finite elements 
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for a given domain size. Often the domain of the problem cannot be extended into the far-field 

due to computational constraints. Therefore, the spherical integral method proves very useful in 

allowing near-field data to be used to calculate a value in the far-field so that target strength 

may be determined. Available computer resources limited three dimensional COMSOL 

simulations to the use of 6EPW =  and 20SMD = , with each simulation requiring several 

hours. Using these parameters, the target strength of a rigid/fixed sphere, radius 5 cm was 

calculated and compared with the exact modal series solution (section 2.3.2). 
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Figure 36 – Target strength of a rigid/fixed sphere, radius 5 cm, using the modal series solution and 
COMSOL (spherical integral method). EPW = 6 and SMD = 20. 

 

At values of ka less than five, the finite element results are very good. They are able to capture 

the proper peak null structure of the exact solution much better than the Kirchhoff method. This 
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is because of the finite element method does not ignore the effects of diffraction. However at 

higher values of ka, the results begin to diverge from the exact solution, causing errors on the 

order of 2-3 dB. This is an effect of some error in the finite element method, most likely caused 

by the radiation condition used.  

 

3.4.3 Methodology for Sand Dollar Predictions 

The process of predicting scattering from any three dimensional object is similar to that of 

the sphere in the previous section. The only difference lies in the creation of the scatterer 

geometry, which has been discussed. For the predictions of the scattering from the sand dollar, 

a disk was used to simplify this geometry. As was seen with the rigid/fixed sphere, errors on 

the order of 2-3 dB were expected from the use of COMSOL, likely stemming from the choice of 

radiation condition. However, the experimental sand dollar scattering data were such that these 

errors were small enough for the finite element method to be useful. The results are presented 

and compared with experimental data in Chapter 4. 

 

3.5 Chapter Summary 

The finite element method has been explored in the application of acoustic scattering 

problems. Techniques for reducing numerical error after the solution process in two and three 

dimensions were presented. These techniques, referred to here as the circular and spherical 

integral methods, also allow scattered pressure values to be calculated at points outside of the 

original domain. COMSOL Multiphysics was explored in the simple tests of scattering from a 

rigid/fixed infinite cylinder and a sphere. The finite element method is used to predict the 



 95 

scattering from rigid/fixed disks in Chapter 4. These results are compared to the experimental 

data of scattering from a sand dollar. 
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Chapter 4 Model Results and 

Comparison to Laboratory 

Experimental Data 

4.1 Introduction 

In this chapter, the sand dollar scattering models are explored, and predictions are 

compared to laboratory experimental results. The models consist of the analytic and numerical 

solutions of the Kirchhoff integral and solutions from the finite element method. Before 

introducing the experimental data, the model predictions are compared with one another. All 

model predictions are based on rigid/fixed boundary conditions. The analytic solution of the 

Kirchhoff integral for a disk, chosen as a simple approximation to the geometry of the flat side 

of the sand dollar, is compared with the predicted results from the finite element method for a 

disk over both ranges of frequency and orientation. Then, the model predictions for the 

rigid/fixed disk and spherical cap are compared to the experimental results from Stanton and 

Chu (2004) of the scattering from an aluminum disk and a sand dollar. These comparisons are 

conducted over a range of angles of orientation, -20 to 80 degrees from broadside, at a single 

frequency, 70 kHz. This range of angles was chosen due to symmetry and difficulties in the 

finite element method near 90 degrees. In addition to the analytic solutions of the Kirchhoff 

integral and the finite element method for a rigid/fixed disk, a numerical solution of the 
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Kirchhoff integral is also compared with the experimental results. This numerical solution is 

found for a rigid/fixed three dimensional model of the sand dollar from the experiments, 

assembled from CT scans. Finally, there is significant evidence that rigid/fixed boundary 

conditions are not appropriate for an aluminum disk, and a heuristic approach for accounting 

for the penetrable boundary condition is presented. This correction is also applied to the model 

predictions of scattering from the sand dollar, as the boundary conditions appropriate for a 

sand dollar are not accurately known. 

 

4.2 Comparison of Predicted Scattering Based on the 

Kirchhoff and Finite Element Methods for a 

Rigid/Fixed Disk 

In this section, the predictions from the analytic Kirchhoff method and finite element 

method are compared. The two models were used to calculate the target strength of a 

rigid/fixed disk over ranges of both frequency and angle of orientation. The analytic solution of 

the Kirchhoff method was derived for a rigid/fixed disk in section 2.5.2. For the finite element 

method solution, the program COMSOL was used. The disk was given a radius of 3.625 cm and 

a thickness of 5.5 mm. This size was chosen based on the actual dimensions of the sand dollar 

from Stanton and Chu (2004), which will be seen in the following section. 

The frequency dependent calculations were performed with the incident acoustic wave at 

broadside to the disk, allowing the finite element simulations to be run in two dimensions, 

resulting in a much faster and more efficient calculation with 6EPW =  and 50SMD = . 
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Afterwards, the spherical integral method described in Chapter 3 was used to calculate target 

strength. The Kirchhoff and finite element methods were carried out over a range of ka, a 

dimensionless quantity given by the product of the wavenumber and the disk’s radius, as 

illustrated in figure 37. 
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Figure 37 - Target strength at broadside incidence of a rigid/fixed disk of radius 3.625 cm and thickness 
5.5 mm, based on (1) the analytic solution of the Kirchhoff integral (dashed line) and (2) the finite 
element method using COMSOL with axial symmetry (line with x’s). EPW = 6 and SMD = 50. 

 

There is very good agreement over most of the range of ka for the two models. The undulations 

in the finite element method predictions, particularly apparent at low ka, most likely result 

from diffraction effects. These are not accounted for in the Kirchhoff method, as was also seen 
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when the results were compared with the modal series based solutions for the sphere and finite 

cylinder in Chapter 2. 

 The target strength of the disk was also calculated at a single frequency, 70 kHz, and 

over a range of angles of orientation, from zero (broadside) to eighty degrees, seen in figure 38. 

The disk was rotated in increments of one degree around an axis perpendicular to the incident 

wave vector. Because of symmetry, it only had to be rotated in one direction. The frequency of 

70 kHz was chosen to match that of the experimental data in the following section and 

corresponds to ka = 10.6.  
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Figure 38 – Target strength at 70 kHz of a rigid/fixed disk of radius 3.625 cm and thickness 5.5 mm 
based on (1) the analytic solution of the Kirchhoff integral (dashed line) and (2) the finite element 
method using COMSOL (line with x’s). EPW = 6 and SMD = 20. 
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The predictions are in relatively good agreement at broadside (angle of orientation zero), 

expected because of the good agreement at ka = 10.6 in the frequency dependent comparison, 

though the finite element method predicted a slightly larger (1.1 dB) target strength at 

broadside. The side lobe structures also match up relatively well, particularly in the location of 

the nulls, although there are height differences of up to 5 dB in target strength on some of the 

peaks. The finite element method in three dimensions was seen in section 3.4.2.3 to have an 

error on the order of 2-3 dB in the comparisons with the modal series solution for a rigid/fixed 

sphere. This suggests that the differences in predicted target strength for some of the side lobes 

are not entirely an error but possibly an effect of diffraction. The maximum deviations in the 

predictions generally increase with angle of orientation, suggesting that the effects of diffraction 

increase in this region as well. 

 

4.3 Experiment Background 

There are published data of the forward scattering and backscattering from a sand dollar 

test and a machined aluminum disk of similar size (Stanton and Chu, 2004). Data for scattering 

from a bivalve were also collected in that study but are not described here. In the experiment, 

the targets were placed individually in a large freshwater tank and subjected to broadband 

chirps over the frequency range 40-95 kHz. The targets were each rotated in the horizontal 

plane in increments of one degree over 360 degrees around a semi-major axis perpendicular to 

the direction of the incident wave. The results were processed in real time to remove any multi-

path echoes from the walls of the tank. The target information is listed in table 1. 
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Target Horizontal dimension 
(cm) 
 

Vertical dimension 
(cm) 

Upper camber 
(cm) 

Sand dollar (Dendraster 
excentricus) 
 

7.25 6.7 .1 

Bivalve (Dinocardium 
robustum vanhyningi) 
 

7.0 6.9 2.9 

Aluminum disk 
 

8.0 8.0 0.19 

Table 1 – Target information for the acoustic scattering experiment performed by Stanton and Chu 
(2004). 

 
 
The upper camber measurement in table 1 refers to the height of the targets when placed on a 

flat surface (sand dollar on its flat side and bivalve on its concave side). The value for the 

aluminum disk refers to its thickness, 1.9 mm. Computed tomography (CT) scans were also 

obtained for the sand dollar at the Marine Research Facility at the Woods Hole Oceanographic 

Institution, illustrating well the interior of the test. 

 

 

Figure 39 – Cross section of a sand dollar (Dendraster excentricus) obtained from CT scans. Details of 
the inner structure are revealed in addition to the high-resolution measurements of the outer shape 
(from Andone Lavery, personal communication).  
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4.4 Comparisons of Acoustic Scattering Predictions to 

Experimental Data 

The predicted scattering based on the Kirchhoff and finite element methods can be 

compared to the experimental data obtained by Stanton and Chu (2004). Each comparison is 

performed over a range of angles of orientation at a frequency of 70 kHz. First the experimental 

results for the aluminum disk are compared to the analytic solution of the Kirchhoff integral for 

a rigid/fixed disk and the finite element solution for a rigid/fixed disk. Next, the experimental 

results for scattering from the flat side of the sand dollar are compared with the analytic 

solution of the Kirchhoff integral for a rigid/fixed disk, the numerical solution of the Kirchhoff 

integral for the flat side rigid/fixed sand dollar model (which uses the actual shape of the sand 

dollar obtained from CT scans), and the finite element method solution for a rigid/fixed disk. 

Finally, the experimental results for scattering from the round side of the sand dollar are 

compared to the analytic solution of the Kirchhoff integral for a rigid/fixed spherical cap and 

the numerical solution of the Kirchhoff integral for the round side rigid/fixed sand dollar 

model. Time limitations prevented the comparison of the finite element method solution for the 

rigid/fixed sand dollar model (either flat side or round side) or rigid/fixed spherical cap with 

experimental data. Tables 2, 3, and 4 summarize the comparisons and there location within this 

work. 

 

 

 

 



 103 

Aluminum Disk  

 Kirchhoff, 
analytic 

Kirchhoff, 
numerical 

Finite element 
method 

Experimental 
Data 

Kirchhoff, 
analytic 

NA Section 2.7.31 Section 4.21 Section 4.4.1* 

Kirchhoff, 
numerical 

Section 2.7.31 NA None2 None2 

Finite element 
method 

Section 4.21 None2 NA Section 4.4.1* 

Experimental 
Data 

Section 4.4.1* None2 Section 4.4.1* NA 

Table 2 – Comparison summary for aluminum disk. 1Comparisons were for rigid/fixed disks, but with 
different dimensions than the aluminum disk. 2The analytic and numerical solutions of the Kirchhoff 
integral for a rigid/fixed disk are identical, so to avoid redundancy, these comparisons were not made. 
*These are revisited in section 4.5.2 with an added heuristic correction, known as the penetrable 
condition. 

 

 

Sand Dollar, Flat Side 

 Kirchhoff, 
analytic1 

Kirchhoff, 
numerical 

Finite element 
method1 

Experimental 
Data 

Kirchhoff, 
analytic1 

NA Section 4.4.2.2 Section 4.2 Section 4.4.2.2 

Kirchhoff, 
numerical 

Section 4.4.2.2 NA None2 Section 4.4.2.2* 

Finite element 
method1 

Section 4.2 None2 NA Section 4.4.2.2* 

Experimental 
Data 

Section 4.4.2.2 Section 4.4.2.2* Section 4.4.2.2* NA 

Table 3 – Comparison summary for sand dollar, flat side. 1Models used a rigid/fixed disk. 2This 
comparison is not shown due to the similarity of the analytic and numerical solutions of the Kirchhoff 
integral. *These are revisited in section 4.5.2 with an added heuristic correction, known as the 
penetrable condition. 
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Sand Dollar, Round Side 

 Kirchhoff, 
analytic1 

Kirchhoff, 
numerical 

Finite element 
method2 

Experimental 
Data 

Kirchhoff, 
analytic1 

NA Section 4.4.2.3 None Section 4.4.2.3 

Kirchhoff, 
numerical 

Section 4.4.2.3 NA None Section 4.4.2.3* 

Finite element 
method2 

None None NA None 

Experimental 
Data 

Section 4.4.2.3 Section 4.4.2.3* None NA 

Table 4 – Comparison summary for sand dollar, round side. 1Model used a rigid/fixed spherical cap, 
and analytic integral is solved numerically. 2Finite element method simulations for a spherical cap 
were not run due to insufficient resources. *This is revisited in section 4.5.2 with an added heuristic 
correction, known as the penetrable condition. 

 

 

4.4.1 Aluminum Disk 

The aluminum disk experimental results are first compared with the analytic solution of 

the Kirchhoff integral for a rigid/fixed disk (equation (2.48)). Recall that the numerical and 

analytic solutions of the Kirchhoff integral for a disk are identical, and so the results for the 

numerical Kirchhoff solution are not shown here. The model disk was given the same 

dimensions as the aluminum disk from the experiment, namely a radius of 4 cm and a thickness 

of 1.9 mm. Figure 40 shows the Kirchhoff solution and the experimental results for the 

aluminum disk plotted over a range of angles of orientation. 
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Figure 40 – Comparison of measured target strength at 70 kHz as a function of angle of orientation for 
an aluminum disk (solid starred line), radius 4 cm and thickness 1.9 mm, to predicted target strength 
of a rigid/fixed disk of similar dimensions found by solving the Kirchhoff integral analytically 
(dashed line).   

 

 Near broadside (approximately +/- 20 degrees), there is good structural agreement 

between the predictions and the experimental results. The main lobe, first side lobes, and most 

of the second side lobes are visible in both the analytic Kirchhoff solution and the experimental 

results. However, the Kirchhoff integral solution predicted higher values for the peaks of these 

lobes, with the main peak of the Kirchhoff prediction almost 3.7 dB above the experimental 

results. The source of this error stems from either the Kirchhoff method itself or the experiment. 

Neglecting experimental error, the two possible sources of error in the Kirchhoff method are the 

neglect of diffraction and the use of a rigid/fixed boundary condition. Because of the high 

aspect ratio shape near broadside, the effects of elastic waves are lessened at this orientation. 
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However, the rigid/fixed boundary condition still causes errors because it neglects transmission 

of sound into the object. In reality, not all of the incident sound wave should be reflected from 

the front surface of the disk as the rigid/fixed boundary condition assumes; some of it is 

transmitted through the front surface and is either reflected from the back of the disk or 

continues all the way through it. The discrepancy seems to be responsible for the Kirchhoff 

method predicting the higher return at broadside. At around 25 degrees away from broadside, 

the peak null patterns lose their similarity. The effects of elastic waves and/or diffraction are 

likely very important in this region, as the Kirchhoff method solution fails to match the null 

pattern of the experimental results. 

 Next, the experimental results for the aluminum disk are compared with the predictions 

from the finite element method for a rigid/fixed disk. Scattering simulations for a disk of radius 

4 cm and thickness 1.9 mm were run in COMSOL, with 20SMD =  and 6EPW = . The 

frequency was set at 70 kHz to match the experimental results available, and the disk was 

rotated in increments of two degrees over a range of angles. The far-field target strength 

predictions were made with the spherical integral method from Chapter 3. Figure 41 shows the 

finite element method prediction and the experimental scattering results for the aluminum disk 

plotted over a range of angles of orientation. 

 



 107 

 

Figure 41 – Comparison of measured target strength at 70 kHz as a function of angle of orientation for 
an aluminum disk (solid starred line), radius 4 cm and thickness 1.9 mm, to predicted target strength 
of a rigid/fixed disk of similar dimensions using the finite element method in COMSOL (thin solid 
line with x’s). EPW = 6 and SMD = 20. 

 

 Like the Kirchhoff method, the finite element method predictions capture the main 

features of the experimental curve near broadside. Also similar to the Kirchhoff predictions, the 

finite element method predicts larger target strength than the experimental results in this region 

and is 5.1 dB greater at broadside. Because the finite element method incorporates the effects of 

diffraction, this strongly suggests that the larger returns near broadside in its prediction are due 

to the use of  rigid/fixed boundary conditions. The finite element prediction is able to capture 

some of the experimental features at higher angles, particularly the peak near sixty degrees, and 

to a lesser extent, the peak near thirty degrees, although they are slightly shifted in angle. The 
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Kirchhoff method did not accurately reproduce the experimental data in this region, suggesting 

that there are strong diffraction effects from the disk at higher angles of incidence. 

 

4.4.2 Sand Dollar  

Unlike the aluminum disk, the sand dollar does not have an analytic solution to the 

Kirchhoff integral. However, its complex geometry may be approximated by simpler shapes, 

such as a disk for the flat side and a spherical cap for the round side, which do have analytic 

solutions to the Kirchhoff integral (Chapter 2). Another approach, described in the next section, 

is to use the numerical method of solving the Kirchhoff integral by creating an accurate surface 

mesh of the sand dollar, obtained from CT scans. In the two sections following, the analytic 

solutions of the Kirchhoff integral for the simple shapes are compared with the numerical 

Kirchhoff solutions this new sand dollar model. This was not necessary for the disk, whose 

analytic and numerical solutions of the Kirchhoff integral were shown to match in section 2.7.3. 

Next the experimental scattering results for the sand dollar are compared with predictions from 

the appropriate models, described in each section. 
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4.4.2.1 Surface Mesh Geometry from CT Scans 

CT scans were performed on the same sand dollar that was used in the scattering 

experiment (Stanton and Chu, 2004) and were used to create the surface mesh necessary for 

solving the Kirchhoff integral numerically. Using the model reconstruction software AMIRA®, 

the CT scans were recreated into a three dimensional model of the sand dollar. This was 

imported into COMSOL and the surface mesh information was gathered for the numerical 

solution of the Kirchhoff integral.  

 

 

Figure 42 – Three dimensional sand dollar model in COMSOL, with the round side visible. 

 

In the following two sections, the analytic solutions of the Kirchhoff integral for the 

simple shapes are first compared with the numerical solutions for the sand dollar. Then each is 

compared to the experimental data. This was not necessary for the disk, whose numerical and 

analytic solutions of the Kirchhoff integral were shown to match in section 2.7.3. 
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4.4.2.2 Sand Dollar Flat Side 

The experimental scattering results from the sand dollar are divided into two categories, 

defined by the sand dollar face oriented toward the incident wave: flat side and round side. A 

disk was used to model the flat side for an analytic solution to the Kirchhoff integral, presented 

as equation (2.48). The radius of the disk was 3.625 cm, half of the sand dollar’s horizontal 

dimension, and its thickness was 5.5 mm, half of the maximum of the sand dollar’s variable 

thickness. The choice of thickness was done to create good agreement between the analytic and 

numerical solutions of the Kirchhoff integral. The Kirchhoff integral was solved numerically for 

the surface of the sand dollar itself, using the results from the CT scans. Figure 43 shows a 

coarse version of the surface mesh in MATLAB, after implementing Newell’s algorithm, 

oriented with the flat side up. 

 

 

Figure 43 – Sand dollar surface mesh in MATLAB after implementing Newell’s algorithm, with the 
orientation corresponding to an incident wave normal to the flat side. 
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By comparing the two methods of solving the Kirchhoff integral, the effects of simplifying 

the geometry to a disk in the analytic expression can be seen. Target strength for these two 

models is shown in figure 44 versus angle of orientation, where zero is normal to the flat side. 

The axis of rotation is the y axis as seen in figure 42. 
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Figure 44 – Comparison of predicted target strength at 70 kHz as a function of angle of orientation for 
a rigid/fixed disk, radius 3.625 cm and thickness 5.5 mm, based on the analytic solution of the 
Kirchhoff integral (dashed line) to predicted target strength of the flat side of a rigid/fixed sand dollar 
of similar dimensions based on a numerical solution to the Kirchhoff integral (solid line with circles). 

 
 
There is very good agreement over a wide range of angles for the two methods, with deviations 

starting to appear near forty degrees from broadside. These discrepancies are due simply to 

geometric differences between the disk and the flat side of the sand dollar. Thus, a rigid/fixed 

disk proves to be a good simplification of the flat side of the sand dollar when solving the 
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Kirchhoff integral. The experimental data from the flat side of the sand dollar is compared with 

the analytic solution of the Kirchhoff integral for a rigid/fixed disk in figure 45 and the 

numerical solution of the Kirchhoff integral for the flat side of the sand dollar in figure 46 over a 

range of angles of orientation. 
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Figure 45 – Comparison of measured target strength at 70 kHz as a function of angle of orientation for 
the flat side of a sand dollar (solid starred line), to predicted target strength of a rigid/fixed disk, 
radius 3.625 cm and thickness 5.5 mm, found by solving the Kirchhoff integral analytically (dashed 
line). 
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Figure 46 – Comparison of measured target strength at 70 kHz as a function of angle of orientation for 
the flat side of a sand dollar (solid starred line), to predicted target strength of the flat side of a 
rigid/fixed sand dollar found by solving the Kirchhoff integral numerically (solid line with circles). 

 

Because the two methods of solving the Kirchhoff integral produced such similar results, 

the focus will stay on figure 46. While the lobe structures of the Kirchhoff and experimental 

curves are similar with respect to angle of orientation, there are significant differences between 

their target strength values at the locations of the peaks and nulls. Generally, the experimental 

data is below the predicted results from the Kirchhoff method. The main lobe of the experiment 

is 8.1 dB below the main lobe of the Kirchhoff curve. This is a similar result to the comparison 

with the aluminum disk. Most likely, modeling the sand dollar as a rigid/fixed scatterer is the 

cause of the higher predicted target strength, for the reasons mentioned before. It is important 
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to note, however, the Kirchhoff solution maintains lobe structure similarity with the aluminum 

disk over the entire range of angles, unlike the aluminum disk.  

Next, the experimental results for the flat side of the sand dollar are compared with the 

predictions from the finite element method, in which the flat side of the sand dollar was 

modeled as a rigid/fixed disk. Scattering simulations from a disk with radius 3.625 cm and 

thickness 5.5 mm were run in COMSOL with 20SMD =  and 6EPW = . The simulations were 

performed at a frequency of 70 kHz and as a function of orientation, in which the disk was 

rotated in increments of one degree over a range of angles. The far-field calculations were 

obtained from the spherical integral method from Chapter 3. Figure 47 shows the finite element 

solution and the experimental scattering results from the sand dollar’s flat side over a range of 

angles. 
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Figure 47 – Comparison of measured target strength at 70 kHz as a function of angle of orientation for 
the flat side of a sand dollar (solid starred line), to predicted target strength of a rigid/fixed disk of 
radius 3.625 cm and thickness 5.5 mm using the finite element method in COMSOL (thin solid line 
with x’s). EPW = 6 and SMD = 20. 

 

 

The predictions from the finite element method are again greater than the experimental 

results at low angles of incidence. At broadside, the finite element curve is about 9.2 dB greater 

than the experimental value. Again, there is not much difference in the angular dependence of 

the peak and nulls between the two curves. 

 

4.4.2.3 Sand Dollar Round Side 

A spherical cap was used for the solution of the Kirchhoff integral for the round side of 

the sand dollar. To create the cap, a sphere of radius 6.523 cm defined for 0θ =  to 33.8θ =  
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degrees was used. This gave a cap with radius 3.625 cm and thickness 1.1 cm, the dimensions of 

the sand dollar. The expression for a spherical cap, equation (2.50), was evaluated with the 

midpoint rule in MATLAB. This process must not be confused with the numerical solution of 

the Kirchhoff integral using the sand dollar surface mesh. For this numerical solution, the round 

side of the sand dollar was modeled again using the CT scans, with a coarse mesh of the round 

side seen in figure 48. 

 

 

Figure 48 – Sand dollar surface mesh in MATLAB after implementing Newell’s algorithm, with the 
orientation corresponding to an incident wave normal to the round side. 

 

Again, these two methods of solving the Kirchhoff integral were compared to see the 

validity of the geometry simplification. The target strengths of the two solutions are shown in 

figure 49 over a range of angles of orientation, where zero corresponds to broadside. The sand 

dollar model was again rotated around the y axis as illustrated in figure 42. 
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Figure 49 – Comparison of predicted target strength at 70 kHz as a function of angle of orientation for 
an spherical cap, radius 3.625 cm and thickness 1.1 cm, based on the analytic solution of the Kirchhoff 
integral (dashed line) to predicted target strength of the round side of a rigid/fixed sand dollar of 
similar dimensions based on a numerical solution to the Kirchhoff integral (solid line with circles). 

 

The two predictions have some general similarities but also some very distinct 

differences. The agreement between the two methods is worse than that between the sand 

dollar’s flat side and the disk. The discrepancies are most noticeable at angles close to 

broadside, where the spherical cap approach predicted a null, but the numerical approach 

predicted a peak. Interestingly, there is far less structure at angles far from broadside for the 

models of the sand dollar’s round side as opposed to those for its flat side. However, at angles 

larger than approximately 15 degrees, the agreement between these two models was relatively 

good, with the target strength decreasing with angle and the levels in relatively good 

agreement. 
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The experimental scattering data from the sand dollar’s round side are compared with the 

analytic solution of the Kirchhoff method for the spherical cap in figure 50 and the numerical 

solution for the sand dollar model in figure 51.  
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Figure 50 – Comparison of measured target strength at 70 kHz as a function of angle of orientation for 
the round side of a sand dollar (solid starred line), to predicted target strength of a rigid/fixed 
spherical cap, radius 3.625 cm and thickness 1.1 cm, found by solving the Kirchhoff integral 
analytically (dashed line). 
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Figure 51 – Comparison of measured target strength at 70 kHz as a function of angle of orientation for 
the round side of a sand dollar (solid starred line), to predicted target strength of the round side of a 
rigid/fixed sand dollar found by solving the Kirchhoff integral numerically (solid line with circles). 

 

 Again, the predictions based on the analytic (figure 50) and numerical (figure 51) 

solutions of the Kirchhoff integral mimic the experimental results in their general structure but 

have noticeable and important differences. The central peak at broadside incidence observed in 

the experimental data supports the hypothesis that the numerical Kirchhoff solution is a better 

model than the spherical cap. Once again, the Kirchhoff results have higher values than the 

experimental data, likely caused by the choice of rigid/fixed boundary conditions. While it is 

probable that some fraction of the incident wave is transmitted through the sand dollar in the 

actual experiment, this is not accounted for with the rigid/fixed boundary condition. The 

increased structure in the lobes of the experiment is likely caused by diffraction effects. 
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Unfortunately, due to time constraints and long numerical run times, the finite element method 

was not tested for a spherical cap, making this hypothesis difficult to verify. 

 

4.5 Heuristic Improvement to Scattering Models 

Developed for Rigid/Fixed Objects 

There are errors inherent in modeling an elastic scatterer as a rigid/fixed object because 

the portion of the wave that is transmitted through the front surface of the scatterer is neglected. 

In addition to neglecting the transmitted portion of the incident wave, the models presented in 

this thesis for aluminum disks and sand dollars have neglected the effects of elastic shear 

waves. The effects of elastic shear waves are extremely complicated for irregular shapes such as 

the sand dollar and are beyond the scope of this work. Instead, the focus of the next section will 

be on attempting to quantify how much of the incident wave is transmitted through versus 

reflected from the sand dollar. This proves easiest when the high aspect ratio shape is near 

broadside. As will be shown, a heuristic correction to the rigid/fixed boundary condition used 

for modeling the aluminum disk and sand dollar can be made that works very well near 

broadside incidence. 

 

4.5.1 Reflection Coefficients from Infinite Half-Spaces and Layers 

When a wave arrives at a boundary, some of it will be reflected and some will be 

transmitted into the new medium. If the boundary is planar, the reflection coefficient can 

quantify how much of the incident wave is reflected. If an incident wave has amplitude 0p , the 
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reflected wave has amplitude 0Rp . In the case of a rigid/fixed boundary, the entire wave is 

reflected, none is transmitted, and 1R = . A simple case for determining R  is from the planar 

boundary of two fluid infinite half spaces. When a plane wave traveling through medium 0 

0 0( , )c ρ  arrives at angle θ  to the normal of the boundary with medium 1 1 1( , )c ρ , the reflection 

coefficient is defined as 

 2 2

2 2

cos sin

cos sin

m n
R

m n

θ θ
θ θ

− −=
+ −

, 
(4.1)  

where 0 1/n c c=  and 1 0/m ρ ρ=  (Frisk, 1994). At normal incidence, this becomes  

 m n
R

m n

−=
+

. 
(4.2)  

Now consider the reflection off of a fluid layer in between two fluid infinite half spaces at 

normal incidence. A wave travels through medium 0 0 0( , )c ρ  and arrives perpendicular to the 

boundary with medium 1 1 1( , )c ρ . Medium 1 forms a layer of thickness h , beyond which is 

medium 2 2 2( , )c ρ .  

 

Figure 52 – Geometry of a single layer in between two infinite half spaces. 

 

There are an infinite number of contributions to the total reflection from this layer: the wave 

that reflects from the front of the layer and waves that reflect within the layer any number of 
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times before transmitting back into medium 0. Brekhovskikh and Lysanov (2003) give a closed 

form expression for the layer’s reflection coefficient, 

 1
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, 
(4.3)  

where abR  is the reflection coefficient of a wave in medium a  off of medium b . The 

wavenumber within the layer is 1k . A similar calculation can be done if the fluid layer is 

replaced by an infinite elastic plate. If the incident wave arrives normal to the plate, then there 

is no shear stress and only compressional waves arise. Then the elastic material may be treated 

as a fluid. 

 Now imagine an incident plane wave arriving normal to n  layers. The j th layer has 

thickness jh  and material properties jc  and jρ . The total reflection coefficient from the series 

of layers can be found using a recursive process. The total reflection from layer n  is found first 

using a modified version of the expression from Brekhovskikh and Lysanov (2003), 
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This can then be used to find the total reflection from both layers n  and 1n − , 
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(4.5)  

The process can be continued for each layer until the total reflection is calculated. As was the 

case with one layer, at normal incidence, this process can be used for fluid or elastic layers, or a 

combination of the two. 
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4.5.2 Determination of Reflection Coefficient for Aluminum Disk and 

Sand Dollar 

 Now the scattering from a finite bounded object is heuristically modeled by assigning it 

a reflection coefficient found in the same manner as the reflection coefficients of fluid and elastic 

layers. The scattering from an object is approximated as  

 
0 ( )

ikr

scat L impen

e
p R p f

r
= Ω , 

(4.6)  

where LR  is its reflection coefficient and impenf  is the scattering amplitude of the object if it had a 

rigid/fixed boundary. This approximation assumes the reflection coefficient is constant 

everywhere on the object, which is inaccurate for many shapes due to different angles of 

incidence. However, this assumption is reasonable at broadside for a high aspect ratio shape 

such as a sand dollar or disk. In the backscattering direction with this formulation,  

 2
10log L impenTS R f=  

2 2
10log 10logimpen LTS f R= + . 

(4.7)  

The approximation gives that the target strength of an object is equal to its rigid/fixed target 

strength plus a term that is a function of its reflection coefficient. The rigid/fixed target strength 

is what was calculated using both the Kirchhoff and finite element methods. These results can 

easily be manipulated to include the effects of the reflection coefficient. 

 Approximations for reflection coefficients of the sand dollar and aluminum disk can be 

made by finding them for infinite plates with similar thicknesses and material properties. This 

technique should work well near broadside, where the dimensions of the objects allow such an 

approximation. Away from broadside, this method is not expected to perform well. The 



 124 

aluminum disk can be modeled as an infinite plate of thickness 1.9 mm with water ( 1000ρ =  

kg/m3, 1500c =  m/s) on either side. The values for the compressional sound speed and density 

for aluminum were taken from Molz and Beamish (1996). 

 

 
Material 

Thickness 
(mm) 

 

Sound speed 
(compress.) 

 
Density 

 
RL 

 
|RL| 

 
10log|RL|2 

Aluminum 1.9 mm 5360 m/s 2700 kg/m3 0.362 – 
0.472i 

0.5954 -4.50 dB 

Table 5 – Reflection coefficient calculation for aluminum disk. 

 
 
This suggests that modeling the aluminum disk as a rigid/fixed scatterer added more than 4 dB 

to its true target strength at broadside. 

The sand dollar is more complicated to model because of its irregular shape. The CT 

scans of the sand dollar (e.g. figure 39) provide clues on how to simplify it. The top and bottom 

interfaces are very distinct, separately by a fluid interior. Ignoring both the curvature of the top 

and the outer edge regions allows the sand dollar to be modeled as two infinite plates, with 

fluid layer separating them. The thicknesses of these three layers must be estimated from the CT 

scan itself. The maximum camber of the sand dollar is 1.1 cm, so this places an upper bound on 

the width of the three layers. The sand dollar’s test wall thickness is approximately 1 mm on 

both the top and bottom interfaces. The sand dollar is composed of calcite, a polymorph of 

calcium carbonate (CaCO3). Carmichael (1982) gives the density of calcite as 2710 kg/m3 and the 

compressional sound speed as 6530 m/s. The reflection coefficient can be calculated over a 

range of both fluid and test layer thicknesses. Water ( 1000ρ =  kg/m3, 1500c =  m/s) was used 

for both the fluid layer and the fluid half spaces on either side of the three layers. 
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Figure 53 – Reflection coefficients from three layer model (calcite-water-calcite). Calcite thickness 
refers to both top and bottom layer thickness. 

 

 Because the fluid layer thickness in the actual sand dollar varies over the range plotted 

in figure 53, there is a large range of reasonable reflection coefficients, approximately 0.2 to 0.7. 

In order to choose the proper value for | |LR , the rigid/fixed predicted target strengths from the 

models are compared to the experimental data near broadside. For the sand dollar, a reflection 

coefficient | | 0.4LR =  was chosen to match the Kirchhoff prediction with the experimental data 

for the flat side at broadside. Based on figure 53, this value is reasonable. 
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4.5.3 Heuristic Correction to the Rigid/Fixed Scattering Models 

By using the calculated reflection coefficient for an object, the heuristically corrected 

model values can be calculated with equation (4.7). The inclusion of the reflection coefficient 

into the calculations is referred to here as the penetrable condition. 

4.5.3.1 Aluminum Disk 

Using the value of | | 0.5954LR =  derived in the previous section for the reflection 

coefficient for the aluminum disk, the target strength based on both the analytic solution to the 

Kirchhoff integral (figure 54) and the finite element method (figure 55) are compared with the 

experimental data.  
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Figure 54 – Comparison of measured target strength at 70 kHz as a function of angle of orientation for 
an aluminum disk (solid starred line), radius 4 cm and thickness 1.9 mm, to predicted target strength 
of a penetrable disk (|RL| = 0.5954) of similar dimensions found by solving the Kirchhoff integral 
analytically (dashed line).   
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Figure 55 – Comparison of measured target strength at 70 kHz as a function of angle of orientation for 
an aluminum disk (solid starred line), radius 4 cm and thickness 1.9 mm, to predicted target strength 
of an penetrable disk (|RL| = 0.5954) of similar dimensions using the finite element method in 
COMSOL (thin solid line with x’s). EPW = 6 and SMD = 20. 

 

With the heuristic correction that accounts, in part, for the assumption of a rigid/fixed 

boundary condition, the Kirchhoff and finite element methods now predict the aluminum disk’s 

scattering relatively well near broadside, especially along the main lobe and first pair of side 

lobes. The Kirchhoff prediction is within 1 dB of the experimental results at broadside. The 

finite element method is seen to have done very well away from broadside as well, capturing 

the large side lobe at sixty degrees. 
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4.5.3.2 Sand Dollar Flat Side 

The sand dollar was a more difficult shape for which to determine reflection coefficient 

because of its multiple interfaces and differing thickness. For the flat side, a value of | | 0.4LR =  

was chosen and was shown to be reasonable using the three layer approach. This value was 

chosen so the value of the numerical solution to the Kirchhoff integral at broadside would 

closely match that of the experimental data. Figure 56 shows the Kirchhoff method prediction 

for the sand dollar’s flat side with the penetrable condition, compared with the experimental 

data for the sand dollar’s flat side. 
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Figure 56 – Comparison of measured target strength at 70 kHz as a function of angle of orientation for 
the flat side of a sand dollar (solid starred line), to predicted target strength of the flat side of  
penetrable sand dollar (|RL| = 0.4) found by solving the Kirchhoff integral numerically (solid line 
with circles). 
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Figure 57 shows the finite element method solution for a disk with the penetrable condition, 

compared with the experimental data for the sand dollar’s flat side. 

 

Figure 57 – Comparison of measured target strength at 70 kHz as a function of angle of orientation for 
the flat side of a sand dollar (solid starred line), to predicted target strength of a penetrable disk (|RL| 
= 0.4) of radius 3.625 cm and thickness 5.5 mm using the finite element method in COMSOL (thin 
solid line with x’s). EPW = 6 and SMD = 20. 

 

Both model predictions are greatly improved with the heuristic correction that accounts, 

in part, for the rigid/fixed boundary conditions. The Kirchhoff prediction is very good near 

broadside now with the choice of reflection coefficient. The finite element method manages not 

only to capture the main lobe but also the first pair of side lobes. The finite element method is 

higher than the corrected experimental curve because of the reflection coefficient chosen. The 

slight difference in width of the main lobes in figure 57 is likely a result of the choice of radius 
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for the disk in the finite element method solution. Both predictions, especially the finite element 

solution, agree with the data at higher angles of orientation also. 

 

4.5.3.3 Sand Dollar Round Side 

 For the round side of the sand dollar, the value of the reflection coefficient | | 0.4LR =  

was chosen in order to match that of the flat side. Figure 58 shows the numerical solution of the 

Kirchhoff integral for the sand dollar round side with the penetrable condition and the 

experimental scattering results from the sand dollar round side. 

 

 

Figure 58 – Comparison of measured target strength at 70 kHz as a function of angle of orientation for 
the round side of a sand dollar (solid starred line), to predicted target strength of the round side of a 
penetrable sand dollar (|RL| = 0.4) found by solving the Kirchhoff integral numerically (solid line 
with circles). 
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There is obvious structural agreement between the predicted results and the experimental data. 

The very slight traces of the nulls in the Kirchhoff prediction line up with those in the 

experimental data. There is still much less structure in the model prediction. 

 

4.6 Summary of Results 

The scattering models developed in this thesis had varying amounts of success in 

predicting the experimental data for scattering from aluminum disks and sand dollars. The 

heuristic correction, which accounted for transmission of the incident wave, was developed and 

was found to significantly improve these predictions. In the case of the aluminum disk, both the 

Kirchhoff and finite element methods succeeded in accurately recreating the scattering curves 

near broadside. The finite element solution was better away from broadside, suggesting that 

there was strong diffraction around the disk.  

In the case of the flat side of the sand dollar, the numerical solution of the Kirchhoff 

integral proved to be very similar to the analytic solution for a disk. Both the Kirchhoff and 

finite element methods did a reasonably good job in predicting the peak-null structure of the 

experimental data over the entire range of angles. The success of the heuristic correction over 

the entire range of orientations suggests that the sand dollar may potentially be modeled as a 

fluid scatterer in the future, without the need for elastic considerations. Testing this is an 

important next step toward understanding the sand dollar’s scattering mechanics. The fact that 

the finite element method did not drastically outperform the Kirchhoff method away from 

broadside, as it did for the aluminum disk, suggests that the effects of diffraction were less for 

the sand dollar; however, this is difficult to determine. If it is true that diffraction is not as 

strong for the sand dollar as the aluminum disks, it would be a result of the geometries and/or 
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the material properties of the two objects. Understanding this has implications for the 

application of using diffraction of benthic shells to detect buried objects at subcritical angles. 

The round side of the sand dollar was not modeled as well as the flat side with the 

Kirchhoff method. Because the finite element method was not tested for this shape, it is difficult 

to conclusively determine the reasons for this. However, it was seen that the numerical solution 

to the Kirchhoff integral is a better model than the analytic solution for a spherical cap. This 

proves the utility of the solving the Kirchhoff integral numerically. Although the results were 

not as good as for the flat side, the general structures of the prediction and the experimental 

data are similar. 
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Chapter 5 Summary and Conclusion 

This focus of this thesis is to understand the acoustic backscattering from individual sand 

dollars (Dendraster excentricus) in the free field. The following paragraphs summarize the 

motivations for this work, the research performed, recommendations for future work, and the 

contributions of this thesis. 

 

5.1 Motivation 

Knowledge of seafloor scattering has many important applications. Benthic shelled 

organisms have been shown to be important contributors to scattering from the seafloor in 

certain cases, depending on the acoustic frequency, angle of incidence, and density of 

organisms. Understanding the scattering physics of individual benthic shells is an important 

step toward understanding the effects of collections in the ocean. Sand dollars were chosen for 

this thesis because of existing laboratory data to which the models could be compared. 

 

5.2 Modeling 

Acoustic scattering models can provide insight to the scattering mechanisms from 

complex objects, such as sand dollars. The Kirchhoff method is a very simple model that proves 

to be very useful at high frequencies (short wavelengths relative to the object size). The 

numerical method of solving the Kirchhoff integral developed here greatly broadens this 

approach by allowing the scattering from irregularly shaped objects to be predicted. It is 
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believed that the accuracy of predictions for an object’s scattering can be greatly increased by 

solving the integral numerically, as opposed to solving it analytically for a simplified object, as 

was the sand dollar’s round side. Applied to acoustic scattering problems, the finite element 

method is a technique far more complicated than the Kirchhoff method. It requires powerful 

computer resources for any meaningful three dimensional calculations. Its advantage is that it 

does not make any of the approximations implicit in the Kirchhoff method, such as neglecting 

the effects of diffraction. However, it has been seen that at high enough frequencies near 

broadside, the finite element method’s predictions are of about the same accuracy as those from 

the Kirchhoff method. It is believed that the finite element method’s value in acoustic scattering 

problems lies at lower frequencies. The heuristic correction for the rigid/fixed boundary 

condition that was developed here was shown to improve the ability of the model to predict the 

experimental scattering data. 

 

5.3 Recommendations for Future Work 

One main limitation of this work was the use of a rigid/fixed boundary condition in the 

scattering models. This allowed only “first order” approximations to the scattering from the 

elastic objects to be studied. Without incorporating the elasticity of a target, it is difficult to 

distinguish the importance of certain scattering phenomena such as diffraction, surface elastic 

waves, and shear wave effects. Although the Kirchhoff method is unable to incorporate the 

effects of elasticity, the same is not true for the finite element method. Currently, a finite 

element code is being developed at the Woods Hole Oceanographic Institution which would 

allow for the modeling of elastic domains (Gonzalo Feijoo, personal communication). This code 

will also incorporate a perfectly matched layer, a far better radiation condition than the 



 135 

simplified Sommerfeld condition used in the COMSOL simulations (Berenger 1994, 1996; Harari 

et al., 2000). It would be valuable to test scattering predictions for sand dollars or other benthic 

shells with the ability to model their elasticity. In addition, this study concerned sand dollars in 

the free field. Scattering involving the geometry where sand dollars are on or near a boundary 

should be examined. As sand dollars will generally be encountered in the ocean lying on the 

seafloor, modeling their scattering while near a boundary could help gain additional insight. 

This could be performed in the finite element method by dividing the surrounding medium 

domain into two fluid regions, one representing the seawater and one representing the seafloor. 

The comparisons between model predictions and experimental data in this thesis focused 

on a single frequency over a range of angles. The insight that these comparisons offer could be 

bolstered by further comparisons with more experimental data. Experimental data for 

additional sand dollars would reduce the effects of experimental error as well as provide insight 

to their scattering physics by examining differences between samples. Comparisons to model 

predictions at frequencies other than 70 kHz would aid this understanding as well. As a final 

experimental recommendation, the scattering from a live sand dollar should be studied. It is 

unknown how the scattering physics of such an organism, surrounded by a thin layer of tissue, 

would be different from only the test. 

 Sand dollars are often found in dense aggregates in situ, creating a very complicated 

scattering problem. The hope is that the study of scattering from individual sand dollars in the 

free field leads to a greater understanding of how these aggregates of organisms scatter sound 

in the ocean. 
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5.4 Contributions of Thesis 

• Development of analytic Kirchhoff method scattering models for a sand dollar, namely a 

disk and spherical cap. 

• Development of a numerical technique for solving the Kirchhoff integral for complex 

three dimensional objects. 

• Comparison of the analytic and numerical solutions of the Kirchhoff integral with 

experimental scattering data from a sand dollar and aluminum disk.  

• Application of the finite element method in the program COMSOL for predicting the 

scattering from a rigid/fixed disk. Comparison of finite element method model 

predictions with experimental scattering data from a sand dollar and aluminum disk. 

• Development of a heuristic approach for accounting for a penetrable boundary 

condition for high aspect ratio objects at broadside. Application of this approach for the 

Kirchhoff and finite element method predictions for scattering from a sand dollar and 

aluminum disk. 
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Appendix A: MATLAB Code 
 

One way to solve the Kirchhoff integral numerically is by generating a mesh in 

COMSOL Multiphysics. The object must be oriented so that the incident plane wave is traveling 

in the negative z direction. Once the geometry and the mesh have been created, they can be 

exported to COMSOL script as a fem structure. The function kirchhoff_mesh.m was written for 

COMSOL Multiphysics Script (ver. 1.0a) to extract the surface mesh information and save to file 

its connectivity and coordinate information. 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%% kirchhoff_mesh.m 
%%% Greg Dietzen 5/27/08 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%% Creates a surface mesh of an object from COMSOL fem structure. Object 
%%% geometry and mesh must be created in COMSOL and exported to COMSOL 
%%% script as an fem structure (ctrl f in GUI). 
  
function kirchhoff_mesh(fem); 
  
fem.xmesh = meshextend(fem); 
  
%%% Find coordinates of all nodes 
nodeinfo = xmeshinfo(fem,'out','nodes'); 
nodes = [0:length(nodeinfo.dofs)-1]'; 
coords = nodeinfo.coords'; 
allnodecoords = [nodes coords]; 
  
%%% Find connectivity of all triangles (surface elements) 
triinfo = xmeshinfo(fem,'out','elements','meshtype','tri'); 
connectivity = triinfo.nodes'-1;   %%%start with node 0 
connectivity = [connectivity(:,1) connectivity(:,3) connectivity(:,6) ...  
    connectivity(:,2) connectivity(:,5) connectivity(:,4)]; 
  
%%% Eliminate internal nodes from list, keeping surface nodes. 
AA = 1e10*ones(length(allnodecoords),4); 
for ii = 1:length(connectivity); 
    AA(connectivity(ii,1)+1,:) = allnodecoords(connectivity(ii,1)+1,:); 
    AA(connectivity(ii,2)+1,:) = allnodecoords(connectivity(ii,2)+1,:); 
    AA(connectivity(ii,3)+1,:) = allnodecoords(connectivity(ii,3)+1,:); 
    AA(connectivity(ii,4)+1,:) = allnodecoords(connectivity(ii,4)+1,:); 
    AA(connectivity(ii,5)+1,:) = allnodecoords(connectivity(ii,5)+1,:); 
    AA(connectivity(ii,6)+1,:) = allnodecoords(connectivity(ii,6)+1,:); 
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end 
  
A0 = []; 
for ii = 1:length(AA); 
    if (AA(ii,2) ~= 1e10 || AA(ii,3) ~= 1e10 || AA(ii,4) ~= 1e10); 
        A0 = [A0; AA(ii,:)]; 
    end 
end 
  
nodecoords = A0; 
  
%%% Save connectivity and coordinate information to file 
fid1 = fopen('kirchhoff_conn.mphtxt','w'); 
fid2 = fopen('kirchhoff_coords.mphtxt','w'); 
  
for ii = 1:length(connectivity); 
    fprintf(fid1,'%d %d %d %d %d %d\n',[connectivity(ii,:)]); 
end 
  
for ii = 1:length(nodecoords); 
    fprintf(fid2,'%d %f %f %f\n',[nodecoords(ii,:)]); 
end 
  
fclose(fid1); 
fclose(fid2); 

 

 After the surface mesh files have been generated, they can be read to evaluate the 

Kirchhoff integral using the functions kirchhoff_integral.m, newell.m, and trianglepoint.m, 

written for use in MATLAB (ver. 7.2.0.232). The inputs are the surface mesh file names and the 

wavenumber of the incident plane wave.  

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%% kirchhoff_integral.m 
%%% Greg Dietzen 5/27/08 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%% Calculates the backscattering amplitude of an object from an incident  
%%% wave in the negative z direction using the Kirchhoff integral. This  
%%% integral is solved numerically from a surface mesh generated by 
%%% kirchhoff_mesh.m. Inputs are the names of the files containing 
%%% connectivity and coordinate information as well as wavenumber k. 
  
function f = kirchhoff_integral(coords_filename, conn_filename, k); 
  
fid1 = fopen(conn_filename,'r'); 
fid2 = fopen(coords_filename,'r'); 
  
connectivity = fscanf(fid1,'%d %d %d %d %d %d\n',[6,inf])'; 
coords = fscanf(fid2,'%d %f %f %f\n',[4,inf])'; 
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fclose(fid1); 
fclose(fid2); 
  
%%% Determine the insonified region of the surface mesh using Newell's 
%%% algorithm. 
visible_conn = newell(coords, connectivity); 
  
kx = 0; 
ky = 0; 
kz = -k; 
  
k_vector = [kx ky kz]; 
  
lamda = 2*pi/k; 
  
%%% Evaluate the integral. 
f = 0; 
k_unit = [kx ky kz]/(sqrt(kx^2+ky^2+kz^2)); 
for ii = 1:length(visible_conn); 
    node1 = visible_conn(ii,1); 
    node2 = visible_conn(ii,2); 
    node3 = visible_conn(ii,3); 
    x1 = coords(node1+1,2); 
    y1 = coords(node1+1,3); 
    z1 = coords(node1+1,4); 
    x2 = coords(node2+1,2); 
    y2 = coords(node2+1,3); 
    z2 = coords(node2+1,4); 
    x3 = coords(node3+1,2); 
    y3 = coords(node3+1,3); 
    z3 = coords(node3+1,4); 
    a = sqrt((x1-x2).^2+(y1-y2).^2+(z1-z2).^2); 
    b = sqrt((x3-x2).^2+(y3-y2).^2+(z3-z2).^2); 
    c = sqrt((x1-x3).^2+(y1-y3).^2+(z1-z3).^2); 
    s = (a+b+c)./2; 
    area = sqrt(s.*(s-a).*(s-b).*(s-c)); 
    vect12 = [x2-x1 y2-y1 z2-z1]; 
    vect13 = [x3-x1 y3-y1 z3-z1]; 
    normal = [vect12(:,2).*vect13(:,3)-vect12(:,3).*vect13(:,2) 
vect12(:,3).*vect13(:,1)-vect12(:,1).*vect13(:,3) vect12(:,1).*vect13(:,2)-
vect12(:,2).*vect13(:,1)]; 
    unit_n = normal/sqrt(normal(1)^2+normal(2)^2+normal(3)^2); 
    n_dot_k = -abs(dot(unit_n, k_unit)); 
    r1 = [x1 y1 z1]; 
    r2 = [x2 y2 z2]; 
    r3 = [x3 y3 z3]; 
    r1_dot_k = dot(r1,k_vector); 
    r2_dot_k = dot(r2,k_vector); 
    r3_dot_k = dot(r3,k_vector); 
    r_dot_k = mean([r1_dot_k r2_dot_k r3_dot_k]); 
    f0 = i/lamda*n_dot_k*exp(i*2*r_dot_k)*area; 
    f = f+f0; 
end 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%% newell.m 
%%% Greg Dietzen 5/27/08 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%% Determines the insonified region of a surface mesh using a modified  
%%% Newell's algorithm. Incoming wave is in the negative z direction. 
  
function visible_conn = newell(coordinates, connectivity); 
  
warning off MATLAB:divideByZero 
  
%%% Number triangular elements for labeling purposes. 
connectivity = [[0:length(connectivity)-1]' connectivity]; 
  
%%% Sample size for rasterization test. 
samplesize = 20; 
  
%%% Determine min and max x,y, and z values for each element and sort by 
%%% max z. 
maxmin = zeros(length(connectivity),7); 
for ii = 1:length(connectivity); 
    node1 = connectivity(ii,2); 
    node2 = connectivity(ii,3); 
    node3 = connectivity(ii,4); 
    maxx = max([coordinates(node1+1,2) coordinates(node2+1,2) ... 
        coordinates(node3+1,2)]); 
    maxy = max([coordinates(node1+1,3) coordinates(node2+1,3) ... 
        coordinates(node3+1,3)]); 
    maxz = max([coordinates(node1+1,4) coordinates(node2+1,4) ... 
        coordinates(node3+1,4)]); 
    minx = min([coordinates(node1+1,2) coordinates(node2+1,2) ... 
        coordinates(node3+1,2)]); 
    miny = min([coordinates(node1+1,3) coordinates(node2+1,3) ... 
        coordinates(node3+1,3)]); 
    minz = min([coordinates(node1+1,4) coordinates(node2+1,4) ... 
        coordinates(node3+1,4)]); 
    maxmin(ii,:) = [ii-1 minx maxx miny maxy minz maxz]; 
end 
sortmaxmin = sortrows(maxmin,6); 
sortmaxmin = flipud(sortrows(sortmaxmin,7)); 
  
%%% Minmax tests in x and y and rasterization test. 
ii = 1; 
while ii <= length(sortmaxmin); 
    maxx = sortmaxmin(ii,3); 
    minx = sortmaxmin(ii,2); 
    maxy = sortmaxmin(ii,5); 
    miny = sortmaxmin(ii,4); 
    jj = ii+1; 
    while jj <= length(sortmaxmin); 
        maxx2 = sortmaxmin(jj,3); 
        minx2 = sortmaxmin(jj,2); 
        if (minx >= maxx2 || maxx <= minx2); 
            jj = jj+1; 
        else 
            maxy2 = sortmaxmin(jj,5); 
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            miny2 = sortmaxmin(jj,4); 
            if (miny >= maxy2 || maxy <= miny2); 
                jj = jj+1; 
            else 
                node1 = connectivity(sortmaxmin(ii,1)+1,2); 
                node2 = connectivity(sortmaxmin(ii,1)+1,3); 
                node3 = connectivity(sortmaxmin(ii,1)+1,4); 
                node4 = connectivity(sortmaxmin(jj,1)+1,2); 
                node5 = connectivity(sortmaxmin(jj,1)+1,3); 
                node6 = connectivity(sortmaxmin(jj,1)+1,4); 
                raster = zeros(samplesize,samplesize); 
                xxx = [minx+(maxx-minx)/samplesize:(maxx-minx)/... 
                    samplesize:maxx]; 
                yyy = fliplr([miny+(maxx-minx)/samplesize:(maxy-miny)/... 
                    samplesize:maxy]); 
                for mm = 1:length(xxx); 
                    for nn = 1:length(yyy); 
                        x = xxx(mm); 
                        y = yyy(nn); 
                        x1 = coordinates(node1+1,2); 
                        y1 = coordinates(node1+1,3); 
                        x2 = coordinates(node2+1,2); 
                        y2 = coordinates(node2+1,3); 
                        x3 = coordinates(node3+1,2); 
                        y3 = coordinates(node3+1,3); 
                        tri1 = trianglepoint(x1,y1,x2,y2,x3,y3,x,y); 
                        raster(nn,mm) = tri1; 
                    end 
                end 
                overlap = 0; 
                for mm = 1:length(xxx); 
                    for nn = 1:length(yyy); 
                        x = xxx(mm); 
                        y = yyy(nn); 
                        x4 = coordinates(node4+1,2); 
                        y4 = coordinates(node4+1,3); 
                        x5 = coordinates(node5+1,2); 
                        y5 = coordinates(node5+1,3); 
                        x6 = coordinates(node6+1,2); 
                        y6 = coordinates(node6+1,3); 
                        tri2 = trianglepoint(x4,y4,x5,y5,x6,y6,x,y); 
                        if (tri2 == 1 && raster(nn,mm) == 1); 
                            overlap = 1; 
                        end 
                    end 
                end 
                if overlap == 1; 
                    sortmaxmin(jj,:) = []; 
                else 
                    jj = jj+1; 
                end 
            end 
        end 
    end 
    ii = ii+1; 
end 
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visible_conn = zeros(length(sortmaxmin),6); 
  
for ii = 1:length(sortmaxmin); 
    visible_conn(ii,:) = connectivity(sortmaxmin(ii,1)+1,2:7); 
end 
 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%% trianglepoint.m 
%%% Greg Dietzen 5/27/08 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%% This function determines whether a point lies within a triangle. Both 
%%% the point (defined by inputs x and y) and the triangle (defined by 
%%% vertices (x1,y1),(x2,y2), and (x3,y3)) are in the x y plane. The output 
%%% is 1 if the point is within the triangle and 0 if it is not. If the 
%%% point lies on the edge of the triangle, it is not considered part of 
%%% it. 
  
function ans = trianglepoint(x1,y1,x2,y2,x3,y3,x,y); 
  
m12 = (y2-y1)/(x2-x1); 
if (isnan(m12) == 1 || m12 == Inf || m12 == -Inf); 
    if x3 > x1; 
        if x > x1; 
            m23 = (y3-y2)/(x3-x2); 
            if (isnan(m23) == 1 || m23 == Inf || m23 == -Inf); 
                if x1 > x2; 
                    if x > x2; 
                        m31 = (y1-y3)/(x1-x3); 
                        if (isnan(m31) == 1 || m31 == Inf || m31 == -Inf); 
                            if x2 > x3; 
                                if x > x3; 
                                    ans = 1; 
                                else 
                                    ans = 0; 
                                end 
                            else 
                                if x < x3; 
                                    ans = 1; 
                                else 
                                    ans = 0; 
                                end 
                            end 
                        else 
                            yy2 = m31*(x2-x3)+y3; 
                                if yy2 < y2;  
                                    yy = m31*(x-x3)+y3; 
                                    if yy < y; 
                                        ans = 1; 
                                    else 
                                        ans = 0; 
                                    end 
                                else 
                                    yy = m31*(x-x3)+y3; 
                                    if yy > y; %%%point is below 3-1 
                                        ans = 1; 
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                                    else 
                                        ans = 0; 
                                    end 
                                end 
                        end 
                    else 
                        ans = 0; 
                    end 
                else 
                    if x < x2; 
                        m31 = (y1-y3)/(x1-x3); 
                        if (isnan(m31) == 1 || m31 == Inf || m31 == -Inf); 
                            if x2 > x3;  
                                if x > x3; 
                                    ans = 1; 
                                else 
                                    ans = 0; 
                                end 
                            else 
                                if x < x3; 
                                    ans = 1; 
                                else 
                                    ans = 0; 
                                end 
                            end 
                        else 
                            yy2 = m31*(x2-x3)+y3; 
                            if yy2 < y2; 
                                yy = m31*(x-x3)+y3; 
                                if yy < y; 
                                    ans = 1; 
                                else 
                                    ans = 0; 
                                end 
                            else 
                                yy = m31*(x-x3)+y3; 
                                if yy > y; 
                                    ans = 1; 
                                else 
                                    ans = 0; 
                                end 
                            end 
                        end 
                    else 
                        ans = 0; 
                    end 
                end 
            else 
                yy1 = m23*(x1-x2)+y2; 
                if yy1 < y1;  
                    yy = m23*(x-x2)+y2; 
                    if yy < y; 
                        m31 = (y1-y3)/(x1-x3); 
                        if (isnan(m31) == 1 || m31 == Inf || m31 == -Inf);  
                            if x2 > x3; 
                                if x > x3; 
                                    ans = 1; 
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                                else 
                                    ans = 0; 
                                end 
                            else 
                                if x < x3; 
                                    ans = 1; 
                                else 
                                    ans = 0; 
                                end 
                            end 
                        else 
                            yy2 = m31*(x2-x3)+y3; 
                            if yy2 < y2; 
                                yy = m31*(x-x3)+y3; 
                                if yy < y; 
                                ans = 1; 
                                else 
                                ans = 0; 
                                end 
                            else 
                                yy = m31*(x-x3)+y3; 
                                if yy > y; 
                                    ans = 1; 
                                else 
                                    ans = 0; 
                                end 
                            end 
                        end 
                    else 
                        ans = 0; 
                    end 
                else 
                    yy = m23*(x-x2)+y2; 
                    if yy > y; 
                        m31 = (y1-y3)/(x1-x3); 
                        if (isnan(m31) == 1 || m31 == Inf || m31 == -Inf); 
                            if x2 > x3; 
                                if x > x3; 
                                    ans = 1; 
                                else 
                                    ans = 0; 
                                end 
                            else 
                                if x < x3; 
                                    ans = 1; 
                                else 
                                    ans = 0; 
                                end 
                            end 
                        else 
                            yy2 = m31*(x2-x3)+y3; 
                            if yy2 < y2; 
                                yy = m31*(x-x3)+y3; 
                                if yy < y; 
                                ans = 1; 
                                else 
                                ans = 0; 
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                                end 
                            else 
                                yy = m31*(x-x3)+y3; 
                                if yy > y; 
                                    ans = 1; 
                                else 
                                    ans = 0; 
                                end 
                            end 
                        end 
                    else 
                        ans = 0; 
                    end 
                end 
            end 
        else 
            ans = 0; 
        end 
    else 
        if x < x1; 
            m23 = (y3-y2)/(x3-x2); 
            if (isnan(m23) == 1 || m23 == Inf || m23 == -Inf); 
                if x1 > x2; 
                    if x > x2; 
                        m31 = (y1-y3)/(x1-x3); 
                        if (isnan(m31) == 1 || m31 == Inf || m31 == -Inf);  
                            if x2 > x3; 
                                if x > x3; 
                                    ans = 1; 
                                else 
                                    ans = 0; 
                                end 
                            else 
                                if x < x3; 
                                    ans = 1; 
                                else 
                                    ans = 0; 
                                end 
                            end 
                        else 
                            yy2 = m31*(x2-x3)+y3; 
                                if yy2 < y2; 
                                    yy = m31*(x-x3)+y3; 
                                    if yy < y; 
                                        ans = 1; 
                                    else 
                                        ans = 0; 
                                    end 
                                else 
                                    yy = m31*(x-x3)+y3; 
                                    if yy > y; 
                                        ans = 1; 
                                    else 
                                        ans = 0; 
                                    end 
                                end 
                        end 
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                    else 
                        ans = 0; 
                    end 
                else 
                    if x < x2; 
                        m31 = (y1-y3)/(x1-x3); 
                        if (isnan(m31) == 1 || m31 == Inf || m31 == -Inf);  
                            if x2 > x3; 
                                if x > x3; 
                                    ans = 1; 
                                else 
                                    ans = 0; 
                                end 
                            else 
                                if x < x3; 
                                    ans = 1; 
                                else 
                                    ans = 0; 
                                end 
                            end 
                        else 
                            yy2 = m31*(x2-x3)+y3; 
                            if yy2 < y2; 
                                yy = m31*(x-x3)+y3; 
                                if yy < y; 
                                    ans = 1; 
                                else 
                                    ans = 0; 
                                end 
                            else 
                                yy = m31*(x-x3)+y3; 
                                if yy > y; 
                                    ans = 1; 
                                else 
                                    ans = 0; 
                                end 
                            end 
                        end 
                    else 
                        ans = 0; 
                    end 
                end 
            else 
                yy1 = m23*(x1-x2)+y2; 
                if yy1 < y1; 
                    yy = m23*(x-x2)+y2; 
                    if yy < y; 
                        m31 = (y1-y3)/(x1-x3); 
                        if (isnan(m31) == 1 || m31 == Inf || m31 == -Inf);   
                            if x2 > x3; 
                                if x > x3; 
                                    ans = 1; 
                                else 
                                    ans = 0; 
                                end 
                            else 
                                if x < x3; 
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                                    ans = 1; 
                                else 
                                    ans = 0; 
                                end 
                            end 
                        else 
                            yy2 = m31*(x2-x3)+y3; 
                            if yy2 < y2; 
                                yy = m31*(x-x3)+y3; 
                                if yy < y; 
                                ans = 1; 
                                else 
                                ans = 0; 
                                end 
                            else 
                                yy = m31*(x-x3)+y3; 
                                if yy > y; 
                                    ans = 1; 
                                else 
                                    ans = 0; 
                                end 
                            end 
                        end 
                    else 
                        ans = 0; 
                    end 
                else 
                    yy = m23*(x-x2)+y2; 
                    if yy > y; 
                        m31 = (y1-y3)/(x1-x3); 
                        if (isnan(m31) == 1 || m31 == Inf || m31 == -Inf); 
                            if x2 > x3; 
                                if x > x3; 
                                    ans = 1; 
                                else 
                                    ans = 0; 
                                end 
                            else 
                                if x < x3; 
                                    ans = 1; 
                                else 
                                    ans = 0; 
                                end 
                            end 
                        else 
                            yy2 = m31*(x2-x3)+y3; 
                            if yy2 < y2; 
                                yy = m31*(x-x3)+y3; 
                                if yy < y; 
                                ans = 1; 
                                else 
                                ans = 0; 
                                end 
                            else 
                                yy = m31*(x-x3)+y3; 
                                if yy > y; 
                                    ans = 1; 
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                                else 
                                    ans = 0; 
                                end 
                            end 
                        end 
                    else 
                        ans = 0; 
                    end 
                end 
            end 
        else 
            ans = 0; 
        end 
    end 
else 
    yy3 = m12*(x3-x1)+y1; 
    if yy3 < y3; 
        yy = m12*(x-x1)+y1; 
        if yy < y; 
            m23 = (y3-y2)/(x3-x2); 
            if (isnan(m23) == 1 || m23 == Inf || m23 == -Inf); 
                if x1 > x2; 
                    if x > x2; 
                        m31 = (y1-y3)/(x1-x3); 
                        if (isnan(m31) == 1 || m31 == Inf || m31 == -Inf); 
                            if x2 > x3; 
                                if x > x3; 
                                    ans = 1; 
                                else 
                                    ans = 0; 
                                end 
                            else 
                                if x < x3; 
                                    ans = 1; 
                                else 
                                    ans = 0; 
                                end 
                            end 
                        else 
                            yy2 = m31*(x2-x3)+y3; 
                                if yy2 < y2; 
                                    yy = m31*(x-x3)+y3; 
                                    if yy < y; 
                                        ans = 1; 
                                    else 
                                        ans = 0; 
                                    end 
                                else 
                                    yy = m31*(x-x3)+y3; 
                                    if yy > y; 
                                        ans = 1; 
                                    else 
                                        ans = 0; 
                                    end 
                                end 
                        end 
                    else 
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                        ans = 0; 
                    end 
                else 
                    if x < x2; 
                        m31 = (y1-y3)/(x1-x3); 
                        if (isnan(m31) == 1 || m31 == Inf || m31 == -Inf); 
                            if x2 > x3; 
                                if x > x3; 
                                    ans = 1; 
                                else 
                                    ans = 0; 
                                end 
                            else 
                                if x < x3; 
                                    ans = 1; 
                                else 
                                    ans = 0; 
                                end 
                            end 
                        else 
                            yy2 = m31*(x2-x3)+y3; 
                            if yy2 < y2; 
                                yy = m31*(x-x3)+y3; 
                                if yy < y; 
                                    ans = 1; 
                                else 
                                    ans = 0; 
                                end 
                            else 
                                yy = m31*(x-x3)+y3; 
                                if yy > y; 
                                    ans = 1; 
                                else 
                                    ans = 0; 
                                end 
                            end 
                        end 
                    else 
                        ans = 0; 
                    end 
                end 
            else 
                yy1 = m23*(x1-x2)+y2; 
                if yy1 < y1; 
                    yy = m23*(x-x2)+y2; 
                    if yy < y; 
                        m31 = (y1-y3)/(x1-x3); 
                        if (isnan(m31) == 1 || m31 == Inf || m31 == -Inf); 
                            if x2 > x3; 
                                if x > x3; 
                                    ans = 1; 
                                else 
                                    ans = 0; 
                                end 
                            else 
                                if x < x3; 
                                    ans = 1; 
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                                else 
                                    ans = 0; 
                                end 
                            end 
                        else 
                            yy2 = m31*(x2-x3)+y3; 
                            if yy2 < y2; 
                                yy = m31*(x-x3)+y3; 
                                if yy < y; 
                                ans = 1; 
                                else 
                                ans = 0; 
                                end 
                            else 
                                yy = m31*(x-x3)+y3; 
                                if yy > y; 
                                    ans = 1; 
                                else 
                                    ans = 0; 
                                end 
                            end 
                        end 
                    else 
                        ans = 0; 
                    end 
                else 
                    yy = m23*(x-x2)+y2; 
                    if yy > y; 
                        m31 = (y1-y3)/(x1-x3); 
                        if (isnan(m31) == 1 || m31 == Inf || m31 == -Inf); 
                            if x2 > x3; 
                                if x > x3; 
                                    ans = 1; 
                                else 
                                    ans = 0; 
                                end 
                            else 
                                if x < x3; 
                                    ans = 1; 
                                else 
                                    ans = 0; 
                                end 
                            end 
                        else 
                            yy2 = m31*(x2-x3)+y3; 
                            if yy2 < y2; 
                                yy = m31*(x-x3)+y3; 
                                if yy < y; 
                                    ans = 1; 
                                else 
                                    ans = 0; 
                                end 
                            else 
                                yy = m31*(x-x3)+y3; 
                                if yy > y; 
                                    ans = 1; 
                                else 
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                                    ans = 0; 
                                end 
                            end 
                        end 
                    else 
                        ans = 0; 
                    end 
                end 
            end 
        else 
            ans = 0; 
        end 
    else 
        yy = m12*(x-x1)+y1; 
        if yy > y; 
            m23 = (y3-y2)/(x3-x2); 
            if (isnan(m23) == 1 || m23 == Inf || m23 == -Inf); 
                if x1 > x2; 
                    if x > x2; 
                        m31 = (y1-y3)/(x1-x3); 
                        if (isnan(m31) == 1 || m31 == Inf || m31 == -Inf); 
                            if x2 > x3; 
                                if x > x3; 
                                    ans = 1; 
                                else 
                                    ans = 0; 
                                end 
                            else 
                                if x < x3; 
                                    ans = 1; 
                                else 
                                    ans = 0; 
                                end 
                            end 
                        else 
                            yy2 = m31*(x2-x3)+y3; 
                                if yy2 < y2; 
                                    yy = m31*(x-x3)+y3; 
                                    if yy < y; 
                                        ans = 1; 
                                    else 
                                        ans = 0; 
                                    end 
                                else 
                                    yy = m31*(x-x3)+y3; 
                                    if yy > y; 
                                        ans = 1; 
                                    else 
                                        ans = 0; 
                                    end 
                                end 
                        end 
                    else 
                        ans = 0; 
                    end 
                else 
                    if x < x2; 
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                        m31 = (y1-y3)/(x1-x3); 
                        if (isnan(m31) == 1 || m31 == Inf || m31 == -Inf); 
                            if x2 > x3; 
                                if x > x3; 
                                    ans = 1; 
                                else 
                                    ans = 0; 
                                end 
                            else 
                                if x < x3; 
                                    ans = 1; 
                                else 
                                    ans = 0; 
                                end 
                            end 
                        else 
                            yy2 = m31*(x2-x3)+y3; 
                            if yy2 < y2; 
                                yy = m31*(x-x3)+y3; 
                                if yy < y; 
                                    ans = 1; 
                                else 
                                    ans = 0; 
                                end 
                            else 
                                yy = m31*(x-x3)+y3; 
                                if yy > y; 
                                    ans = 1; 
                                else 
                                    ans = 0; 
                                end 
                            end 
                        end 
                    else 
                        ans = 0; 
                    end 
                end 
            else 
                yy1 = m23*(x1-x2)+y2; 
                if yy1 < y1; 
                    yy = m23*(x-x2)+y2; 
                    if yy < y; 
                        m31 = (y1-y3)/(x1-x3); 
                        if (isnan(m31) == 1 || m31 == Inf || m31 == -Inf); 
                            if x2 > x3; 
                                if x > x3; 
                                    ans = 1; 
                                else 
                                    ans = 0; 
                                end 
                            else 
                                if x < x3; 
                                    ans = 1; 
                                else 
                                    ans = 0; 
                                end 
                            end 
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                        else 
                            yy2 = m31*(x2-x3)+y3; 
                            if yy2 < y2; 
                                yy = m31*(x-x3)+y3; 
                                if yy < y; 
                                ans = 1; 
                                else 
                                ans = 0; 
                                end 
                            else 
                                yy = m31*(x-x3)+y3; 
                                if yy > y; 
                                    ans = 1; 
                                else 
                                    ans = 0; 
                                end 
                            end 
                        end 
                    else 
                        ans = 0; 
                    end 
                else 
                    yy = m23*(x-x2)+y2; 
                    if yy > y; 
                        m31 = (y1-y3)/(x1-x3); 
                        if (isnan(m31) == 1 || m31 == Inf || m31 == -Inf); 
                            if x2 > x3; 
                                if x > x3; 
                                    ans = 1; 
                                else 
                                    ans = 0; 
                                end 
                            else 
                                if x < x3; 
                                    ans = 1; 
                                else 
                                    ans = 0; 
                                end 
                            end 
                        else 
                            yy2 = m31*(x2-x3)+y3; 
                            if yy2 < y2; 
                                yy = m31*(x-x3)+y3; 
                                if yy < y; 
                                    ans = 1; 
                                else 
                                    ans = 0; 
                                end 
                            else 
                                yy = m31*(x-x3)+y3; 
                                if yy > y; 
                                    ans = 1; 
                                else 
                                    ans = 0; 
                                end 
                            end 
                        end 
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                    else 
                        ans = 0; 
                    end 
                end 
            end 
        else 
            ans = 0; 
        end 
    end 
end 
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